Optimal pointers for joint measurement of σ_{x} and σ_{z} via homodyne detection

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 392773
(http://iopscience.iop.org/0305-4470/39/11/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 03/06/2010 at 04:15

Please note that terms and conditions apply.

Optimal pointers for joint measurement of σ_{x} and σ_{z} via homodyne detection

Bas Janssens ${ }^{1}$ and Luc Bouten ${ }^{2}$
${ }^{1}$ Department of Mathematics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
${ }^{2}$ Physical Measurement and Control 266-33, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA

Received 14 October 2005, in final form 18 January 2006
Published 1 March 2006
Online at stacks.iop.org/JPhysA/39/2773

Abstract

We study a model of a qubit in interaction with the electromagnetic field. By means of homodyne detection, the field-quadrature $A_{t}+A_{t}^{*}$ is observed continuously in time. Due to the interaction, information about the initial state of the qubit is transferred to the field, thus influencing the homodyne measurement results. We construct random variables (pointers) on the probability space of homodyne measurement outcomes having distributions close to the initial distributions of σ_{x} and σ_{z}. Using variational calculus, we find the pointers that are optimal. These optimal pointers are very close to hitting the bound imposed by Heisenberg's uncertainty relation on joint measurement of two non-commuting observables. We close the paper by giving the probability densities of the pointers.

PACS numbers: 03.65.Ta, 03.70.+k

1. Introduction

The implementation of quantum filtering and control [5] in recent experiments [2, 13] has brought new interest to the field of continuous time measurement of quantum systems [5, 7, 9-12, 25]. In particular, homodyne detection has played a considerable role in this development [10]. In this paper, we aim to gain insight into the transfer of information about the initial state of a qubit from this qubit, a two-level atom, to the homodyne photocurrent, which is observed in actual experiments. Our goal is to perform a joint measurement of two non-commuting observables in the initial system. In order to achieve this, we construct random variables (pointers) on the space of possible homodyne measurement results, having distributions close (in a sense to be defined) to the distributions of these observables in the initial state.

The problem of joint measurement of non-commuting observables has been studied by several authors before; see $[12,16,22]$ and the references therein. As a measure for the quality
of an unbiased measurement, we use the difference between the variance of the pointer in the final state and the variance of the observable in the initial state, evaluated in the worst case initial state [18]. In other words, the quality of measurement is given in terms of the worst case added variance. These worst case added variances for two pointers, corresponding to two non-commuting observables of the initial system, satisfy a Heisenberg-like relation that bounds how well their joint measurement can be performed [18].

This paper concentrates on the example of a qubit coupled to the quantized electromagnetic field. We study this system in the weak coupling limit [15], i.e. the interaction between qubit and field is governed by a quantum stochastic differential equation in the sense of Hudson and Parthasarathy [17]. In the electromagnetic field, we perform a homodyne detection experiment. Its integrated photocurrent is the measurement result for measurement of the field-quadrature $A_{t}+A_{t}^{*}$ continuously in time. Using the characteristic functions introduced by Barchielli and Lupieri [4], we find the probability density for these measurement results. In this density the x - and z-component of the Bloch vector of the initial state appear, indicating that homodyne detection is in fact a joint measurement of σ_{x} and σ_{z} in the initial state.

The goal of this paper is to construct random variables (pointers) on the probability space of homodyne measurement results having distributions as close as possible to those of the observables σ_{x} and σ_{z} in the initial state of the qubit. 'As close as possible' is taken to mean that the pointer must give an unbiased estimate of the observable, with its worst case added variance as low as possible. Using an argument due to Wiseman [24], we first show that optimal random variables will only depend on the endpoint of a weighted path of the integrated photocurrent. Allowed to restrict our attention to this smaller class of pointers, we are able to use standard variational calculus to obtain the optimal random variables. They do not achieve the bound imposed by the Heisenberg-like relation for the worst case added variances, but will be off by less than 5.6%.

The remainder of this paper is organized as follows. In section 2, we introduce the model of the qubit coupled to the field in the weak coupling limit. Section 3 introduces the quality of a measurement in terms of the worst case added variance. This section also contains the Heisenberg-like relation for joint measurement. In section 4, we calculate the characteristic function of Barchielli and Lupieri for the homodyne detection experiment. Section 5 deals with the variational calculus to find the optimal pointers. In section 6, we calculate the densities of the optimal pointers and then capture our main results graphically. In the last section we discuss our results.

2. The model

We consider a two-level atom, i.e. a qubit, in interaction with the quantized electromagnetic field. The qubit is described by \mathbb{C}^{2} and the electromagnetic field by the symmetric Fock space \mathcal{F} over the Hilbert space of quadratically integrable functions $L^{2}(\mathbb{R})$ (space of one-photon wavefunctions), i.e.

$$
\mathcal{F}:=\mathbb{C} \oplus \bigoplus_{k=1}^{\infty} L^{2}(\mathbb{R})^{\otimes_{s} k}
$$

With the Fock space \mathcal{F} we can describe superpositions of field states with different numbers of photons. The joint system of qubit and field is described by the Hilbert space $\mathbb{C}^{2} \otimes \mathcal{F}$.

The interaction between the qubit and the electromagnetic field is studied in the weak coupling limit [$1,14,15]$. This means that in the interaction picture the unitary dynamics of the qubit and the field together is given by a quantum stochastic differential equation (QSDE)
in the sense of Hudson and Parthasarathy [17]

$$
\begin{align*}
& \mathrm{d} U_{t}=\left\{\sigma_{-} \mathrm{d} A_{t}^{*}-\sigma_{+} \mathrm{d} A_{t}-\frac{1}{2} \sigma_{+} \sigma_{-} \mathrm{d} t\right\} U_{t}, \quad \text { with } \quad \sigma_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \\
& \sigma_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad U_{0}=I . \tag{1}
\end{align*}
$$

The operators σ_{-}and σ_{+}are the annihilator and creator on the two-level system. The field annihilation and creation processes are denoted by A_{t} and A_{t}^{*}, respectively. Keep in mind that the evolution U_{t} acts nontrivially on the combined system $\mathbb{C}^{2} \otimes \mathcal{F}$, whereas $\sigma_{ \pm}$and A_{t} are understood to designate the single system-operators $\sigma_{ \pm} \otimes I$ and $I \otimes A_{t}$. Throughout this paper, we will remain in the interaction picture. Equation (1) should be understood as a shorthand for the integral equation

$$
U_{t}=I+\int_{0}^{t} \sigma_{-} U_{\tau} \mathrm{d} A_{\tau}^{*}-\int_{0}^{t} \sigma_{+} U_{\tau} \mathrm{d} A_{\tau}-\frac{1}{2} \int_{0}^{t} \sigma_{+} \sigma_{-} U_{\tau} \mathrm{d} \tau
$$

where the integrals on the right-hand side are stochastic integrals in the sense of Hudson and Parthasarathy [17]. The value of these integrals does not lie in their actual definition (on which we will not comment further), but in the Itô rule satisfied by them, allowing for easy calculations.

Theorem 2.1 (quantum Itô rule $[17,20])$. Let X_{t} and Y_{t} be stochastic integrals of the form

$$
\mathrm{d} X_{t}=C_{t} \mathrm{~d} A_{t}+D_{t} \mathrm{~d} A_{t}^{*}+E_{t} \mathrm{~d} t, \quad \mathrm{~d} Y_{t}=F_{t} \mathrm{~d} A_{t}+G_{t} \mathrm{~d} A_{t}^{*}+H_{t} \mathrm{~d} t
$$

for some stochastically integrable processes $C_{t}, D_{t}, E_{t}, F_{t}, G_{t}$ and H_{t} (see [17, 20] for definitions). Then the process $X_{t} Y_{t}$ satisfies the relation

$$
\mathrm{d}\left(X_{t} Y_{t}\right)=X_{t} \mathrm{~d} Y_{t}+\left(\mathrm{d} X_{t}\right) Y_{t}+\mathrm{d} X_{t} \mathrm{~d} Y_{t}
$$

where $\mathrm{d} X_{t} \mathrm{~d} Y_{t}$ should be evaluated according to the following quantum Itô table:

	$\mathrm{d} A_{t}$	$\mathrm{~d} A_{t}^{*}$	$\mathrm{~d} t$
$\mathrm{~d} A_{t}$	0	$\mathrm{~d} t$	0
$\mathrm{~d} A_{t}^{*}$	0	0	0
$\mathrm{~d} t$	0	0	0

i.e. $\mathrm{d} X_{t} \mathrm{~d} Y_{t}=C_{t} G_{t} \mathrm{~d} t$.

As a corollary we have that, for any $f \in C^{2}(\mathbb{R})$, the process $f\left(X_{t}\right)$ satisfies $\mathrm{d}\left(f\left(X_{t}\right)\right)=$ $f^{\prime}\left(X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right)\left(\mathrm{d} X_{t}\right)^{2}$, where $\left(\mathrm{d} X_{t}\right)^{2}$ should be evaluated according to the quantum Itô table.

First a matter of notation. The quantum Itô rule will be used for calculating differentials of products of stochastic integrals. Let $\left\{Z_{i}\right\}_{i=1, \ldots, p}$ be stochastic integrals. We then write

$$
\mathrm{d}\left(Z_{1} Z_{2} \cdots Z_{p}\right)=\sum_{\substack{\nu \subset\{1, \ldots, p\} \\ \nu \neq \emptyset}}[\nu]
$$

where the sum runs over all non-empty subsets of $\{1, \ldots, p\}$. For any $v=\left\{i_{1}, \ldots, i_{k}\right\}$, the term $[\nu]$ is the contribution to $\mathrm{d}\left(Z_{1} Z_{2} \cdots Z_{p}\right)$ coming from differentiating only the terms with indices in the set $\left\{i_{1}, \ldots, i_{k}\right\}$ and preserving the order of the factors in the product. The differential $\mathrm{d}\left(Z_{1} Z_{2} Z_{3}\right)$, for example, contains terms of type [1], [2], [3], [12], [13], [23] and [123]. We have [2] $=Z_{1}\left(\mathrm{~d} Z_{2}\right) Z_{3},[13]=\left(\mathrm{d} Z_{1}\right) Z_{2}\left(\mathrm{~d} Z_{3}\right),[123]=\left(\mathrm{d} Z_{1}\right)\left(\mathrm{d} Z_{2}\right)\left(\mathrm{d} Z_{3}\right)$, etc.

Let us return to equation (1). In order to illustrate how the quantum Itô rule will be used, we calculate the time evolution on the qubit explicitly. The algebra of qubit-observables is
the algebra of 2×2-matrices, denoted by $M_{2}(\mathbb{C})$. The algebra of observables in the field is given by $B(\mathcal{F})$, the bounded operators on \mathcal{F}. If id : $M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ is the identity map and $\phi: B(\mathcal{F}) \rightarrow \mathbb{C}$ is the expectation with respect to the vacuum state $\Phi:=1 \oplus 0 \oplus 0 \oplus \cdots \in \mathcal{F}$ (i.e. $\phi(Y):=\langle\Phi, Y \Phi\rangle$), then time evolution on the qubit $T_{t}: M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ is given by $T_{t}(X):=\mathrm{id} \otimes \phi\left(U_{t}^{*} X \otimes I U_{t}\right)$. On the combined system, the full time evolution $j_{t}: M_{2}(\mathbb{C}) \otimes B(\mathcal{F}) \rightarrow M_{2}(\mathbb{C}) \otimes B(\mathcal{F})$ is given by $j_{t}(W):=U_{t}^{*} W U_{t}$. In a diagram this reads

$$
\begin{array}{ccc}
M_{2}(\mathbb{C}) & \xrightarrow{T_{t}} & M_{2}(\mathbb{C}) \tag{2}\\
\text { id } \otimes I \downarrow & & \uparrow \mathrm{id} \otimes \phi \\
M_{2}(\mathbb{C}) \otimes B(\mathcal{F}) & & j_{t} \\
& M_{2}(\mathbb{C}) \otimes B(\mathcal{F}) .
\end{array}
$$

In the Schrödinger picture the arrows would be reversed. A qubit-state ρ would be extended with the vacuum to $\rho \otimes \phi$, then time evolved with U_{t}, and in the last step the partial trace over the field would be taken, resulting in the state $\rho \circ T_{t}$.

Using the Itô rule we can derive a (matrix-valued) differential equation for $T_{t}(X)$, i.e.

$$
\begin{align*}
\mathrm{d} T_{t}(X) & =\mathrm{id} \otimes \phi\left(\mathrm{~d}\left(U_{t}^{*} X \otimes I U_{t}\right)\right) \\
& =\mathrm{id} \otimes \phi\left(\left(\mathrm{~d} U_{t}^{*}\right) X \otimes I U_{t}+U_{t}^{*} X \otimes I\left(\mathrm{~d} U_{t}\right)+\left(\mathrm{d} U_{t}^{*}\right) X \otimes I\left(\mathrm{~d} U_{t}\right)\right) \\
& =\mathrm{id} \otimes \phi\left(U_{t}^{*} L(X) \otimes I U_{t}\right) \mathrm{d} t \\
& =T_{t}(L(X)) \mathrm{d} t \tag{3}
\end{align*}
$$

where L is the Lindblad generator

$$
L(X):=-\frac{1}{2}\left(\sigma_{+} \sigma_{-} X+X \sigma_{+} \sigma_{-}\right)+\sigma_{+} X \sigma_{-}
$$

In derivation (3), we used the QSDE for U_{t}^{*} which easily follows from (1)

$$
\mathrm{d} U_{t}^{*}=U_{t}^{*}\left\{\sigma_{+} \mathrm{d} A_{t}-\sigma_{-} \mathrm{d} A_{t}^{*}-\frac{1}{2} \sigma_{+} \sigma_{-} \mathrm{d} t\right\}, \quad U_{0}^{*}=I
$$

Furthermore, we used that stochastic integrals with respect to $\mathrm{d} A_{t}$ and $\mathrm{d} A_{t}^{*}$ vanish with respect to the vacuum expectation, leaving us only with the $\mathrm{d} t$ terms. The differential equation (3) with initial condition $T_{0}(X)=X$ is solved by $T_{t}(X)=\exp (t L)(X)$, which is exactly the time evolution of a two-level system spontaneously decaying to the ground state, as it should be. Although the arguments above are completely standard (cf [17]), they do illustrate nicely and briefly some of the techniques used also in the following sections.

3. Quality of information transfer

Now suppose we do a homodyne detection experiment, enabling us to measure the observables $A_{t}+A_{t}^{*}$ in the field continuously in time [3]. If initially the qubit is in state ρ, then at time t the qubit and field together are in a state ρ^{t} on $M_{2}(\mathbb{C}) \otimes B(\mathcal{F})$ given by $\rho^{t}(W):=\rho \otimes \phi\left(U_{t}^{*} W U_{t}\right)=\rho\left(\mathrm{id} \otimes \phi\left(U_{t}^{*} W U_{t}\right)\right)$. Since

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{id} \otimes \phi\left(U_{t}^{*} I \otimes\left(A_{t}+A_{t}^{*}\right) U_{t}\right)\right) & =\mathrm{id} \otimes \phi\left(\mathrm{~d}\left(U_{t}^{*} I \otimes\left(A_{t}+A_{t}^{*}\right) U_{t}\right)\right) \\
& =\mathrm{id} \otimes \phi([1]+[2]+[3]+[12]+[13]+[23]+[123]) \\
& =\mathrm{id} \otimes \phi\left(U_{t}^{*}\left(\sigma_{-}+\sigma_{+}\right) \otimes I U_{t}\right) \mathrm{d} t \\
& =\exp (t L)\left(\sigma_{-}+\sigma_{+}\right) \mathrm{d} t=\mathrm{e}^{-\frac{t}{2}} \sigma_{x} \mathrm{~d} t
\end{aligned}
$$

we have that regardless the initial state ρ of the qubit, the expectation of $\left(A_{t}+A_{t}^{*}\right)$ in the final state ρ^{t} will equal the expectation of $\left(2-2 \mathrm{e}^{-\frac{t}{2}}\right) \sigma_{x}$ in the initial state ρ.

3.1. Defining the quality of information transfer

The process at hand is thus a transfer of information about σ_{x} to a 'pointer' $A_{t}+A_{t}^{*}$, which can be read off by means of homodyne detection. This motivates the following definition.

Definition 3.1 (unbiased measurement [18]). Let X be an observable of the qubit, i.e. a selfadjoint element of $M_{2}(\mathbb{C})$, and let Y be an observable of the field, i.e. a self-adjoint operator in (or affiliated to) $B(\mathcal{F})$. An unbiased measurement M of X with pointer Y is by definition a completely positive map $M: B(\mathcal{F}) \rightarrow M_{2}(\mathbb{C})$ such that $M(Y)=X$.

Needless to say, for each fixed t the map $M: B(\mathcal{F}) \rightarrow M_{2}(\mathbb{C})$ given by $M(B):=$ id $\otimes \phi\left(U_{t}^{*} I \otimes B U_{t}\right)$ is a measurement of σ_{x} with pointer $Y=\left(2-2 \mathrm{e}^{-\frac{t}{2}}\right)^{-1}\left(A_{t}+A_{t}^{*}\right)$. This means that, after the measurement procedure of coupling to the field in the vacuum state and allowing for interaction with the qubit for t time units, the distribution of the measurement results of the pointer Y has inherited the expectation of σ_{x}, regardless of the initial state ρ. However, we are more ambitious and would like its distribution as a whole to resemble that of σ_{x}. This motivates the following definition.

Definition 3.2 (quality [18]). Let $M: B(\mathcal{F}) \rightarrow M_{2}(\mathbb{C})$ be an unbiased measurement of X with pointer Y. Then its quality σ is defined by

$$
\sigma^{2}:=\sup \left\{\operatorname{Var}_{\rho \circ M}(Y)-\operatorname{Var}_{\rho}(X) \mid \rho \in \mathcal{S}\left(M_{2}(\mathbb{C})\right)\right\}
$$

where $\mathcal{S}\left(M_{2}(\mathbb{C})\right)$ denotes the state space of $M_{2}(\mathbb{C})$ (i.e. all positive normalized linear functionals on $M_{2}(\mathbb{C})$).

This means that σ^{2} is the variance added to the initial distribution of X by the measurement procedure M for the worst case initial state ρ. A small calculation shows that

$$
\operatorname{Var}_{\rho \circ M}(Y)-\operatorname{Var}_{\rho}(X)=\rho\left(M\left(Y^{2}\right)-M(Y)^{2}\right),
$$

which implies that $\sigma^{2}=\left\|M\left(Y^{2}\right)-M(Y)^{2}\right\|$, where $X \mapsto\|X\|$ denotes the operator norm on $M_{2}(\mathbb{C})$. In particular this shows that σ^{2} is positive, as one might expect. It follows from [18] that σ equals zero if and only if the measurement procedure M exactly carries over all distributions of X to Y. In short, σ is a suitable measure for how well M transfers information about X to the pointer Y.

3.2. Calculating the quality of information transfer

Let us return to the example at hand, i.e. $M(B)=\mathrm{id} \otimes \phi\left(U_{t}^{*} I \otimes B U_{t}\right)$, with field-observable $Y=\left(2-2 \mathrm{e}^{-\frac{t}{2}}\right)^{-1}\left(A_{t}+A_{t}^{*}\right)$ as a pointer for σ_{x}. Let us calculate its quality, which amounts to evaluating $M\left(Y^{2}\right)=\left(2-2 \mathrm{e}^{-\frac{t}{2}}\right)^{-2} M\left(\left(A_{t}+A_{t}^{*}\right)^{2}\right)$. To this aim, we will first introduce some ideas which will be of use to us in later calculations as well.

Definition 3.3. Let f and h be real-valued functions, h twice differentiable. Let Y_{t} be given by $\mathrm{d} Y_{t}=f(t)\left(\mathrm{d} A_{t}+\mathrm{d} A_{t}^{*}\right), Y_{0}=0$. For $X \in M_{2}(\mathbb{C})$ we define

$$
F_{h}(X, t):=\operatorname{id} \otimes \phi\left(U_{t}^{*} X \otimes h\left(Y_{t}\right) U_{t}\right)
$$

When no confusion can arise we shall shorten $F_{h}(X, t)$ to $F_{h}(X)$.
The homodyne detection experiment has given us a measurement result (the integrated photocurrent) which is just the path of measurement results for $A_{t}+A_{t}^{*}$ continuously in time. Given this result, we post-process it by weighting the increments of the path with the
function $f(t)$ and letting $h(y)$ act on the result. The following lemma will considerably shorten calculations.

Lemma 3.4.

$$
\frac{\mathrm{d} F_{h}(X)}{\mathrm{d} t}=F_{h}(L(X))+f(t) F_{h^{\prime}}\left(\sigma_{+} X+X \sigma_{-}\right)+\frac{1}{2} f(t)^{2} F_{h^{\prime \prime}}(X) .
$$

Proof. Using the notation below theorem 2.1 with $Z_{1}=U_{t}^{*}, Z_{2}=I \otimes h\left(Y_{t}\right)$ and $Z_{3}=U_{t}$, we find

$$
\mathrm{d} F_{h}(X)=\mathrm{id} \otimes \phi([1]+[2]+[3]+[12]+[13]+[23]+[123])
$$

Again we will use that the vacuum expectation kills all $\mathrm{d} A_{t}$ and $\mathrm{d} A_{t}^{*}$ terms. Using theorem 2.1 we see that after the vacuum expectation the terms [1], [3] and [13] make up $F_{h}(L(X)) \mathrm{d} t$. Since third powers of increments are 0 we again have $[123]=0$. From

$$
\mathrm{d} h\left(Y_{t}\right)=h^{\prime}\left(Y_{t}\right) f(t)\left(\mathrm{d} A_{t}+\mathrm{d} A_{t}^{*}\right)+\frac{1}{2} h^{\prime \prime}\left(Y_{t}\right) f(t)^{2} \mathrm{~d} t
$$

we find that, after taking vacuum expectations, terms [12] and [23] make up the second term $f(t) F_{h^{\prime}}\left(\sigma_{+} X+X \sigma_{-}\right) \mathrm{d} t$ and [2] provides the last term $\frac{1}{2} f(t)^{2} F_{h^{\prime \prime}}(X) \mathrm{d} t$.

We are now well-equipped to calculate $M\left(\left(A_{t}+A_{t}^{*}\right)^{2}\right)$. Choose $f(t)=1$ and $h(x)=x^{2}$. (The maps $x \mapsto x^{n}$ will be denoted by \mathfrak{X}^{n} hereafter.) Then $M\left(\left(A_{t}+A_{t}^{*}\right)^{2}\right)=F_{\mathfrak{X}^{2}}(I)$ and by lemma 3.4
$\frac{\mathrm{d} F_{\mathfrak{X}^{2}}(I)}{\mathrm{d} t}=2 F_{\mathfrak{X}}\left(\sigma_{-}+\sigma_{+}\right)+F_{1}(I)=2 F_{\mathfrak{X}}\left(\sigma_{-}+\sigma_{+}\right)+I, \quad F_{\mathfrak{X}^{2}}(I, 0)=0$.
Applying lemma 3.4 to $F_{\mathfrak{X}}\left(\sigma_{-}+\sigma_{+}\right)$, we obtain
$\frac{\mathrm{d} F_{\mathfrak{X}}\left(\sigma_{-}+\sigma_{+}\right)}{\mathrm{d} t}=-\frac{1}{2} F_{\mathfrak{X}}\left(\sigma_{-}+\sigma_{+}\right)+2 F_{1}\left(\sigma_{+} \sigma_{-}\right), \quad F_{\mathfrak{X}}\left(\sigma_{-}+\sigma_{+}, 0\right)=0$.
Finally, $F_{1}\left(\sigma_{+} \sigma_{-}\right)$satisfies

$$
\begin{equation*}
\frac{\mathrm{d} F_{1}\left(\sigma_{+} \sigma_{-}\right)}{\mathrm{d} t}=-F_{1}\left(\sigma_{+} \sigma_{-}\right), \quad F_{1}\left(\sigma_{+} \sigma_{-}, 0\right)=\sigma_{+} \sigma_{-} \tag{6}
\end{equation*}
$$

Solving (6), (5) and (4) successively leads first to $F_{1}\left(\sigma_{+} \sigma_{-}\right)=\mathrm{e}^{-t} \sigma_{+} \sigma_{-}$, then to $F_{\mathfrak{X}}\left(\sigma_{-}+\sigma_{+}\right)=$ $4\left(\mathrm{e}^{-\frac{t}{2}}-\mathrm{e}^{-t}\right) \sigma_{+} \sigma_{-}$and finally to $F_{\mathfrak{X}^{2}}(I)=8\left(\mathrm{e}^{-\frac{t}{2}}-1\right)^{2} \sigma_{+} \sigma_{-}+t I$. Consequently, the quality of the measurement M of σ_{x} with pointer $Y=\left(2-2 \mathrm{e}^{-\frac{t}{2}}\right)^{-1}\left(A_{t}+A_{t}^{*}\right)$ is given by

$$
\begin{aligned}
\sigma^{2} & =\left\|M\left(Y^{2}\right)-M(Y)^{2}\right\|=\left\|\frac{8\left(\mathrm{e}^{-\frac{t}{2}}-1\right)^{2} \sigma_{+} \sigma_{-}+t I}{\left(2-2 \mathrm{e}^{-\frac{t}{2}}\right)^{2}}-I\right\| \\
& =\left\|2 \sigma_{+} \sigma_{-}+\left(\frac{t}{\left(2-2 \mathrm{e}^{-\frac{t}{2}}\right)^{2}}-1\right) I\right\|=\frac{t}{\left(2-2 \mathrm{e}^{-\frac{t}{2}}\right)^{2}}+1 .
\end{aligned}
$$

This expression takes its minimal value 2.228 at $t=2.513$, leading to a quality $\sigma=1.493$.
The calculation above has an interesting side product. The observable $M\left(\left(A_{t}+A_{t}^{*}\right)^{2}\right)$ depends linearly on σ_{z}, indicating that in addition to information on σ_{x}, also information on σ_{z} in the initial qubit-state ends up in the measurement outcome. Indeed, if we use as a pointer

$$
\begin{equation*}
\tilde{Y}:=\frac{\left(A_{t}+A_{t}^{*}\right)^{2}-t I}{4\left(\mathrm{e}^{-\frac{t}{2}}-1\right)^{2}}-I, \tag{7}
\end{equation*}
$$

then we have $M(\tilde{Y})=\sigma_{z}$, so that M is also a measurement of σ_{z} with the pointer \tilde{Y}.
Note that the pointers Y and \tilde{Y} commute, i.e. measuring $A_{t}+A_{t}^{*}$ via the homodyne detection scheme is an indirect joint measurement of σ_{x} and σ_{z}. If we would also like to gain
some information about σ_{y}, we could for example sweep the measured quadrature through $\left[0,2 \pi\right.$) in time by measuring $\int_{0}^{t} \mathrm{e}^{\mathrm{i} \omega \tau} \mathrm{d} A_{\tau}+\mathrm{e}^{-\mathrm{i} \omega \tau} \mathrm{d} A_{\tau}^{*}$ instead. In this paper however, we will restrict ourselves to continuous time measurement of $A_{t}+A_{t}^{*}$, as additional information on σ_{y} would deteriorate the quality of σ_{x} - and/or σ_{z}-measurement. The following theorem is a Heisenberg-like relation that gives a bound on how well joint measurements can be performed.

Theorem 3.5 (joint measurement [18]). Let $M: B(\mathcal{F}) \rightarrow M_{2}(\mathbb{C})$ be an unbiased measurement of self-adjoint observables $X \in M_{2}(\mathbb{C})$ and $\tilde{X} \in M_{2}(\mathbb{C})$ with self-adjoint commuting pointers Y and \tilde{Y} in (or affiliated to) $B(\mathcal{F})$, respectively. Then for their corresponding qualities σ and $\tilde{\sigma}$ the following relation holds

$$
2 \sigma \tilde{\sigma} \geqslant\|[X, \tilde{X}]\| .
$$

Denote by $\tilde{\sigma}$ the quality of the σ_{z} measurement with the pointer \tilde{Y} defined in (7). Since $\left[\sigma_{x}, \sigma_{z}\right]=-2 \mathrm{i} \sigma_{y}$, the qualities σ and $\tilde{\sigma}$ (corresponding to the pointers Y and \tilde{Y}, respectively) satisfy the inequality

$$
\begin{equation*}
\sigma \tilde{\sigma} \geqslant 1 \tag{8}
\end{equation*}
$$

Using similar techniques as before, which is recursively calculating $F_{\mathfrak{X}^{4}}(I)$ via lemma 3.2, we find

$$
\tilde{\sigma}^{2}=\frac{t^{2}}{8\left(\mathrm{e}^{-\frac{t}{2}}-1\right)^{4}}+\frac{2 t-4\left(\mathrm{e}^{-\frac{t}{2}}-1\right)^{2}}{\left(\mathrm{e}^{-\frac{t}{2}}-1\right)^{2}}
$$

This expression takes its minimal value 8.836 at $t=2.513$. This leads to a quality $\tilde{\sigma}=2.973$, which means that $\sigma \tilde{\sigma}=4.437$, i.e. we are far removed from hitting bound 1 in (8). However, there is still some room for manoeuvring by post-processing of the homodyne measurement data.

4. The weighted path

Let us presently return to our homodyne detection experiment. We observe $A_{\tau}+A_{\tau}^{*}$ continuously in time, i.e. the result of our measurement is a path ω of measurement results ω_{τ} (the photocurrent integrated up to time τ) for $A_{\tau}+A_{\tau}^{*}$. This means that we have a space Ω of all possible measurement paths and that we can identify an operator $A_{\tau}+A_{\tau}^{*}$ with the map from Ω to \mathbb{R} mapping a measurement path $\omega \in \Omega$ to the measurement result ω_{τ} at time τ. That is, we have simultaneously diagonalized the family of commuting operators $\left\{A_{\tau}+A_{\tau}^{*} \mid \tau \geqslant 0\right\}$ and viewed them as random variables on the spectrum Ω. The spectral projectors of the operators $\left\{A_{\tau}+A_{\tau}^{*} \mid 0 \leqslant \tau \leqslant t\right\}$ endow Ω with a filtration of σ-algebras Σ_{t}. Furthermore, the states ρ^{τ}, defined by $\rho^{\tau}(W):=\rho \otimes \phi\left(U_{\tau}^{*} W U_{\tau}\right)$, provide a family of consistent measures \mathbb{P}_{τ} on (Ω, Σ_{τ}), turning it into the probability space $\left(\Omega, \Sigma_{t}, \mathbb{P}\right.$). (See e.g. [8].)

We aim to find random variables on $\left(\Omega, \Sigma_{t}, \mathbb{P}\right)$ having distributions resembling those of σ_{x} and σ_{z} in the initial state ρ. In the previous section we used the random variables
$Y(\omega)=\frac{\omega_{\tau}}{2-2 \mathrm{e}^{-\frac{\tau}{2}}} \quad$ and $\quad \tilde{Y}(\omega)=\frac{\omega_{\tau}^{2}-\tau}{4\left(\mathrm{e}^{-\frac{\tau}{2}}-1\right)^{2}}-1, \quad \tau=2.513$
for σ_{x} and σ_{z}, respectively. Our next goal is to find the optimal random variables, in the sense of the previously defined quality.

4.1. Restricting the class of pointers

In our specific example, M is given by $M(B)=\mathrm{id} \otimes \phi\left(U_{\tau}^{*} I \otimes B U_{\tau}\right)$. Note that stochastic integrals with respect to the annihilator A_{τ} acting on the vacuum vector Φ are zero. Therefore, we can modify U_{τ} to Z_{τ}, given by

$$
\mathrm{d} Z_{\tau}=\left\{\sigma_{-}\left(\mathrm{d} A_{\tau}^{*}+\mathrm{d} A_{\tau}\right)-\frac{1}{2} \sigma_{+} \sigma_{-} \mathrm{d} \tau\right\} Z_{\tau}, \quad Z_{0}=I
$$

without affecting M [6]. Therefore, for all $B \in B(\mathcal{F})$, we have $M(B)=\operatorname{id} \otimes \phi\left(U_{\tau}^{*} I \otimes B U_{\tau}\right)=$ id $\otimes \phi\left(Z_{\tau}^{*} I \otimes B Z_{\tau}\right)$. The solution Z_{t} can readily be found, it is given by

$$
Z_{t}=\left(\begin{array}{cc}
\mathrm{e}^{-\frac{1}{2} t} & 0 \\
\int_{0}^{t} \mathrm{e}^{-\frac{1}{2} \tau}\left(\mathrm{~d} A_{\tau}+\mathrm{d} A_{\tau}^{*}\right) & 1
\end{array}\right)
$$

Note that Z_{t}, as a matrix valued function of the measurement path, is an element of $M_{2}(\mathbb{C}) \otimes \mathcal{C}_{t}$, where \mathcal{C}_{t} is the commutative von Neumann algebra generated by $A_{\tau}+A_{\tau}^{*}, 0 \leqslant \tau \leqslant t$. Moreover we see that Z_{t} is not a function of all the ($A_{\tau}+A_{\tau}^{*}$)'s separately, it is only a function of the endpoint of the weighted path $Y_{t}=\int_{0}^{t} \mathrm{e}^{-\frac{1}{2} \tau}\left(\mathrm{~d} A_{\tau}+\mathrm{d} A_{\tau}^{*}\right)$ [24]. Therefore if we define $\mathcal{S}_{t} \subset \mathcal{C}_{t}$ to be the commutative von Neumann algebra generated by Y_{t}, then we even have $Z_{t} \in M_{2}(\mathbb{C}) \otimes \mathcal{S}_{t}$.

Denote by $C \mapsto \mathbb{E}\left[C \mid \mathcal{S}_{t}\right]$ the unique classical conditional expectation from \mathcal{C}_{t} onto \mathcal{S}_{t} that leaves ϕ invariant, i.e. $\phi\left(\mathbb{E}\left[C \mid \mathcal{S}_{t}\right]\right)=\phi(C)$ for all $C \in \mathcal{C}_{t}$. We can extend $\mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ by tensoring it with the identity map on the 2×2 matrices to obtain a map id $\otimes \mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ from $M_{2}(\mathbb{C}) \otimes \mathcal{C}_{t}$ onto $M_{2}(\mathbb{C}) \otimes \mathcal{S}_{t}$. From the positivity of $\mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ as a map between commutative algebras, it follows that $\mathrm{id} \otimes \mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ is completely positive. Since $\mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ satisfies $\mathbb{E}\left[C S \mid \mathcal{S}_{t}\right]=\mathbb{E}\left[C \mid \mathcal{S}_{t}\right] S$ for all $C \in \mathcal{C}_{t}$ and $S \in \mathcal{S}_{t}$, we find that $\operatorname{id} \otimes \mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ satisfies the module property, i.e.

$$
\mathrm{id} \otimes \mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]\left(A_{1} B A_{2}\right)=A_{1}\left(\mathrm{id} \otimes \mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right](B)\right) A_{2}
$$

for all $A_{1}, A_{2} \in M_{2}(\mathbb{C}) \otimes \mathcal{S}_{t}$ and $B \in M_{2}(\mathbb{C}) \otimes \mathcal{C}_{t}$. Moreover, if ρ is a state on $M_{2}(\mathbb{C})$, then it follows from the invariance of ϕ under $\mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ that id $\otimes \mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ leaves $\rho \otimes \phi$ invariant. We conclude that, given ρ on $M_{2}(\mathbb{C})$, the map id $\otimes \mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ from $M_{2}(\mathbb{C}) \otimes \mathcal{C}_{t}$ onto $M_{2}(\mathbb{C}) \otimes \mathcal{S}_{t}$ is the unique conditional expectation in the noncommutative sense of [21] that leaves $\rho \otimes \phi$ invariant. We will use the shorthand $\mathbb{E}_{\mathcal{S}_{t}}$ for id $\otimes \mathbb{E}\left[\cdot \mid \mathcal{S}_{t}\right]$ in the following.

Lemma 4.1. Let $C \in \mathcal{C}_{t}$ be a pointer with quality σ_{C} such that $M(C)=X$. Then $\tilde{C}:=\mathbb{E}\left[C \mid \mathcal{S}_{t}\right]$ is also a pointer with $M(\tilde{C})=X$, and with quality $\sigma_{\tilde{C}} \leqslant \sigma_{C}$.

Proof. Note that for all states ρ on $M_{2}(\mathbb{C})$ we have

$$
\begin{aligned}
\rho(M(\tilde{C})) & =\rho \otimes \phi\left(Z_{t}^{*} I \otimes \tilde{C} Z_{t}\right)=\rho \otimes \phi\left(Z_{t}^{*} \mathbb{E}_{\mathcal{S}_{t}}(I \otimes C) Z_{t}\right)=\rho \otimes \phi\left(\mathbb{E}_{\mathcal{S}_{t}}\left(Z_{t}^{*} I \otimes C Z_{t}\right)\right) \\
& =\rho \otimes \phi\left(Z_{t}^{*} I \otimes C Z_{t}\right)=\rho(M(C))=\rho(X),
\end{aligned}
$$

where we used the module property and the fact that Z_{t} is an element of $M_{2}(\mathbb{C}) \otimes \mathcal{S}_{t}$ in the third step and the invariance of $\rho \otimes \phi$ in the fourth step. Since this holds for all states ρ on $M_{2}(\mathbb{C})$, we conclude that $M(\tilde{C})=X$.

As for the variance, we note first that the conditional expectation $\mathbb{E}_{\mathcal{S}_{t}}$ is a completely positive identity preserving map. Therefore, for all self-adjoint $C \in \mathcal{C}_{t}$, we have

$$
\mathbb{E}_{\mathcal{S}_{t}}\left(I \otimes C^{2}\right) \geqslant\left(\mathbb{E}_{\mathcal{S}_{t}}(I \otimes C)\right)^{2}
$$

by the Cauchy-Schwarz inequality for completely positive maps [23].

We can now apply the same strategy as before. For all states ρ on $M_{2}(\mathbb{C})$ we have

$$
\begin{aligned}
\rho\left(M\left(C^{2}\right)\right) & =\rho \otimes \phi\left(Z_{t}^{*} I \otimes C^{2} Z_{t}\right) \\
& =\rho \otimes \phi\left(\mathbb{E}_{\mathcal{S}_{t}}\left(Z_{t}^{*} I \otimes C^{2} Z_{t}\right)\right) \\
& =\rho \otimes \phi\left(Z_{t}^{*} \mathbb{E}_{\mathcal{S}_{t}}\left(I \otimes C^{2}\right) Z_{t}\right) \\
& \geqslant \rho \otimes \phi\left(Z_{t}^{*}\left(\mathbb{E}_{\mathcal{S}_{t}}(I \otimes C)\right)^{2} Z_{t}\right) \\
& =\rho\left(M\left(\tilde{C}^{2}\right)\right) .
\end{aligned}
$$

Thus $M\left(C^{2}\right) \geqslant M\left(\tilde{C}^{2}\right)$, and in particular $\sigma_{C}^{2}=\left\|M\left(C^{2}\right)-M(C)^{2}\right\| \geqslant \| M\left(\tilde{C}^{2}\right)-$ $M(\tilde{C})^{2} \|=\sigma_{\tilde{C}}^{2}$.
This has a very useful consequence: if we are looking for pointers that record, say σ_{x} or σ_{z} in an optimal fashion, then it suffices to examine only pointers in \mathcal{S}_{t}. Instead of sifting through the collection of all random variables on the measurement outcomes, we are thus allowed to confine the scope of our search to the rather transparent collection of measurable functions of Y_{t}. In the following, we will look at such pointers $h_{t}\left(Y_{t}\right)$. We will usually drop the subscript t on h to make the notation lighter.

4.2. Distribution of Y_{t}

At this point we are interested in the probability distribution of the random variable Y_{t}. Its characteristic function [4] is given by

$$
E(k):=\mathbb{E}_{\rho^{t}}\left[\exp \left(-\mathrm{i} k Y_{t}\right)\right]=\rho \otimes \phi\left(U_{t}^{*} I \otimes \exp \left(-\mathrm{i} k Y_{t}\right) U_{t}\right)=\rho\left(F_{\exp (-\mathrm{i} k \mathfrak{X})}(I)\right),
$$

so that we need only calculate $F_{\exp (-\mathrm{i} k \mathfrak{X})}(I)$. For notational convenience, we will replace the subscript $\exp (-\mathrm{i} k \mathfrak{x})$ by k in the following. Using lemma 3.4, we find the following system of matrix-valued differential equations:

$$
\begin{aligned}
& \frac{\mathrm{d} F_{k}(I)}{\mathrm{d} t}=-\mathrm{i} k \mathrm{e}^{-\frac{t}{2}} F_{k}\left(\sigma_{-}+\sigma_{+}\right)-\frac{k^{2} \mathrm{e}^{-t}}{2} F_{k}(I), \\
& \frac{\mathrm{d} F_{k}\left(\sigma_{-}+\sigma_{+}\right)}{\mathrm{d} t}=-\frac{1}{2} F_{k}\left(\sigma_{-}+\sigma_{+}\right)-2 \mathrm{i} k \mathrm{e}^{-\frac{t}{2}} F_{k}\left(\sigma_{+} \sigma_{-}\right)-\frac{k^{2} \mathrm{e}^{-t}}{2} F_{k}\left(\sigma_{-}+\sigma_{+}\right), \\
& \frac{\mathrm{d} F_{k}\left(\sigma_{+} \sigma_{-}\right)}{\mathrm{d} t}=-F_{k}\left(\sigma_{+} \sigma_{-}\right)-\frac{k^{2} \mathrm{e}^{-t}}{2} F_{k}\left(\sigma_{+} \sigma_{-}\right),
\end{aligned}
$$

with initially

$$
F_{k}(I, 0)=I, \quad F_{k}\left(\sigma_{-}+\sigma_{+}, 0\right)=\sigma_{-}+\sigma_{+}, \quad F_{k}\left(\sigma_{+} \sigma_{-}, 0\right)=\sigma_{+} \sigma_{-}
$$

Solving this system leads to

$$
F_{k}(I)=\mathrm{e}^{-\frac{k^{2}\left(1-\mathrm{e}^{-t}\right)}{2}}\left(I-\mathrm{i} k\left(1-\mathrm{e}^{-t}\right)\left(\sigma_{-}+\sigma_{+}\right)-k^{2}\left(1-\mathrm{e}^{-t}\right)^{2} \sigma_{+} \sigma_{-}\right)
$$

We define the Fourier transform to be $\mathcal{F}(f)(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(k) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} k$. Then the probability density of Y_{t} with respect to the Lebesgue measure is given by $\frac{1}{\sqrt{2 \pi}} \mathcal{F}(E)(x)=$ $\frac{1}{\sqrt{2 \pi}} \rho\left(\mathcal{F}\left(F_{k}(I)\right)(x)\right)$. Defining $p(x):=\frac{1}{\sqrt{2 \pi}} \mathcal{F}\left(F_{k}(I)\right)(x)$, we can write

$$
p(x)=\frac{\mathrm{e}^{-\frac{1}{2} \frac{x^{2}}{1-\mathrm{e}^{-t}}}}{\sqrt{2 \pi\left(1-\mathrm{e}^{-t}\right)}}\left(I+x\left(\sigma_{-}+\sigma_{+}\right)+\left(x^{2}-1+\mathrm{e}^{-t}\right) \sigma_{+} \sigma_{-}\right),
$$

i.e. Y_{t} is distributed according to a Gaussian perturbed by the matrix elements of the initial state $\rho\left(\sigma_{-}+\sigma_{+}\right)=\rho\left(\sigma_{x}\right)$ and $\rho\left(\sigma_{+} \sigma_{-}\right)=\frac{1}{2} \rho\left(\sigma_{z}\right)+\frac{1}{2}$. No information about ρ on σ_{y} enters the distribution though. To gain information about σ_{y} we would have to change our continuous
time measurement setup, as we discussed before. If we absorb a constant $\left(1-\mathrm{e}^{-t}\right)^{-\frac{1}{2}}$ in the definition of Y_{t}, i.e. $Y_{t}:=\left(1-\mathrm{e}^{-t}\right)^{-\frac{1}{2}} \int_{0}^{t} \mathrm{e}^{-\frac{\tau}{2}}\left(\mathrm{~d} A_{\tau}+\mathrm{d} A_{\tau}^{*}\right)$, then its density becomes

$$
\begin{equation*}
p(y)=\frac{\mathrm{e}^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}}\left(I+\beta_{t} y\left(\sigma_{-}+\sigma_{+}\right)+\beta_{t}^{2}\left(y^{2}-1\right) \sigma_{+} \sigma_{-}\right) \tag{10}
\end{equation*}
$$

where $\beta_{t}:=\sqrt{1-\mathrm{e}^{-t}}$.

5. Variational calculus

In lemma 4.1, we have shown that it suffices to consider only random variables of the form $h\left(Y_{t}\right)$ for some measurable h. In equation (10), we have captured the probability distribution of Y_{t}. All that remains now is to calculate the optimal h, which can be done with variational calculus.

5.1. Optimal σ_{x}-measurement

We seek the function h^{*} for which the quality σ of the pointer $h^{*}\left(Y_{t}\right)$ for σ_{x}-measurement is optimal. In other words, we need

$$
\sigma^{2}:=\left\|\int_{-\infty}^{\infty} h^{2}(y) p(y) \mathrm{d} y-\left(\int_{-\infty}^{\infty} h(y) p(y) \mathrm{d} y\right)^{2}\right\|:=\left\|\left(\begin{array}{cc}
d_{1} & 0 \tag{11}\\
0 & d_{2}
\end{array}\right)\right\|
$$

to be minimal under the restriction $\int_{-\infty}^{\infty} h(y) p(y) \mathrm{d} y=\sigma_{x}$.
Now σ^{2} is the norm of a diagonal 2×2-matrix with entries d_{1} and d_{2}. Both depend smoothly on h, but $\sigma^{2}=\max \left\{d_{1}, d_{2}\right\}$ does not. There are three possibilities:
(i) $\sigma^{2}=d_{1}$ in some open neighbourhood of h^{*}. To find these h^{*}, we must minimize the smooth functional d_{1} and then check whether $d_{1}<d_{2}$.
(ii) $\sigma^{2}=d_{2}$ in some open neighbourhood of h^{*}. To find these h^{*}, we must minimize d_{2} and check whether $d_{2}<d_{1}$.
(iii) $d_{1}=d_{2}$ for h^{*}. To find these h^{*}, we must minimize d_{1} subject to the condition $d_{1}=d_{2}$.

In principle, we need three different functionals Λ_{1}, Λ_{2} and Λ_{3} for these three distinct cases. However, it turns out that we can make do with the following functional:

$$
\begin{align*}
& \Lambda\left(h, \kappa, \gamma_{1}, \gamma_{2}, \gamma_{3}\right):=\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h^{2}(y) \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y-1\right) \\
&+ \kappa\left(\frac{\beta_{t}^{2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h^{2}(y)\left(y^{2}-1\right) \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y\right)+\gamma_{1}\left(\int_{-\infty}^{\infty} h(y) \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y\right) \\
& \quad+\gamma_{2}\left(\int_{-\infty}^{\infty} h(y)\left(y^{2}-1\right) \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y\right)+\gamma_{3}\left(\frac{\beta_{t}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h(y) y \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y-1\right) \tag{12}
\end{align*}
$$

The constants γ_{1}, γ_{2} and γ_{3} are the Lagrange multipliers enforcing $\int_{-\infty}^{\infty} h(y) p(y) \mathrm{d} y=\sigma_{x}$. These are needed in all cases: Λ_{1}, Λ_{2} and Λ_{3}. One can readily check that setting $\kappa=0$ in Λ yields Λ_{1}, setting $\kappa=1$ yields Λ_{2} and considering κ as a free Lagrange multiplier forces $d_{1}=d_{2}$, so that one has $\Lambda_{3}=\Lambda$.

All three cases lead to similar optimality conditions. The requirement that the optimal solution be stable under first-order variations yields h^{*} satisfying either

$$
\begin{equation*}
h^{*}(x)=\frac{C_{1} x+C_{2}}{x^{2}+\varepsilon}+C_{3} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
h^{*}(x)=C_{4} x^{2}+C_{5} x+C_{6} \tag{14}
\end{equation*}
$$

for some real constants $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}$ and ε depending on $\kappa, \gamma_{1}, \gamma_{2}, \gamma_{3}$.
Suppose that h^{*} takes the shape (14). The constraint $\int_{-\infty}^{\infty} h^{*}(y) p(y) \mathrm{d} y=\sigma_{-}+\sigma_{+}$will then force $C_{4}=C_{6}=0$ and $C_{5}=\beta_{t}^{-1}$, so that $h^{*}(y)=\beta_{t}^{-1} y$. The random variable we are investigating is simply the observed path, weighted by the function $f(\tau)=\beta_{t}^{-1} \mathrm{e}^{-\tau / 2}$, with t the final time of measurement. Since all the integrals we encounter are Gaussian moments, we can readily compute $M\left(h^{* 2}\left(Y_{t}\right)\right)=\int_{-\infty}^{\infty} h^{* 2}(y) p(y) \mathrm{d} y$ to be $2 \sigma_{+} \sigma_{-}+\beta_{t}^{-2} I$. Thus

$$
\sigma^{2}=\left\|\left(2 \sigma_{+} \sigma_{-}+\beta_{t}^{-2} I\right)-\left(\sigma_{-}+\sigma_{+}\right)^{2}\right\|=1+\beta_{t}^{-2}
$$

For $t \rightarrow \infty$, this amounts to $\sigma \rightarrow \sqrt{2}$. Already, we have improved on the naive result $\sigma=1.493$ obtained previously.

We proceed with the more involved case (13), which will provide us with the optimal solution. Before we continue with the constants C_{1}, C_{2}, C_{3} and ε however, we calculate some integrals for later use.

Definition 5.1. Define the error function $\operatorname{erf}(x)$ and integrals $I(\varepsilon)$ and $J(\varepsilon)$ by
$\operatorname{erf}(x):=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{e}^{-u^{2}} \mathrm{~d} u, \quad I(\varepsilon):=\int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+\varepsilon} \mathrm{d} x, \quad J(\varepsilon):=\int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{\left(x^{2}+\varepsilon\right)^{2}} \mathrm{~d} x$.

Lemma 5.2.

$$
J(\varepsilon)=\frac{\sqrt{2 \pi}+(1-\varepsilon) I(\varepsilon)}{2 \varepsilon} \quad \text { and } \quad I(\varepsilon)=\pi \sqrt{\frac{\mathrm{e}^{\varepsilon}}{\varepsilon}}\left(1-\operatorname{erf}\left(\sqrt{\frac{\varepsilon}{2}}\right)\right)
$$

Proof. Since the Fourier transform of $\mathrm{e}^{-\sqrt{\varepsilon}|k|}$ is equal to $\sqrt{\frac{2 \varepsilon}{\pi}} \frac{1}{x^{2}+\varepsilon}$, we find

$$
\begin{aligned}
I(\varepsilon) & =\sqrt{\frac{\pi}{2 \varepsilon}} \int_{-\infty}^{\infty} \mathcal{F}\left(\mathrm{e}^{-\sqrt{\varepsilon}|k|}\right) \mathcal{F}\left(\mathrm{e}^{-\frac{k^{2}}{2}}\right) \mathrm{d} x \\
& =\sqrt{\frac{\pi}{2 \varepsilon}} \int_{-\infty}^{\infty} \mathrm{e}^{-\sqrt{\varepsilon}|k|} \mathrm{e}^{-\frac{k^{2}}{2}} \mathrm{~d} k=\sqrt{\frac{2 \pi}{\varepsilon}} \int_{0}^{\infty} \mathrm{e}^{-\sqrt{\varepsilon} k} \mathrm{e}^{-\frac{k^{2}}{2}} \mathrm{~d} k \\
& =\sqrt{\frac{2 \pi}{\varepsilon}} \mathrm{e}^{\frac{1}{2} \varepsilon} \int_{\sqrt{\varepsilon}}^{\infty} \mathrm{e}^{-\frac{u^{2}}{2}} \mathrm{~d} u=\pi \sqrt{\frac{\mathrm{e}^{\varepsilon}}{\varepsilon}}\left(1-\operatorname{erf}\left(\sqrt{\frac{\varepsilon}{2}}\right)\right),
\end{aligned}
$$

where, in the second step, we have used that the Fourier $\operatorname{transform} \mathcal{F}$ is unitary. The expression for J follows from

$$
\begin{aligned}
0 & =\left.\frac{x \mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+\varepsilon}\right|_{-\infty} ^{\infty}=\int_{-\infty}^{\infty} \frac{d}{\mathrm{~d} x}\left(\frac{x \mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+\varepsilon}\right) \mathrm{d} x=\int_{-\infty}^{\infty}\left(\frac{1-x^{2}}{x^{2}+\varepsilon}-\frac{2 x^{2}}{\left(x^{2}+\varepsilon\right)^{2}}\right) \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty}\left(-1+\frac{\varepsilon-1}{x^{2}+\varepsilon}+\frac{2 \varepsilon}{\left(x^{2}+\varepsilon\right)^{2}}\right) \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{~d} x=-\sqrt{2 \pi}+(\varepsilon-1) I(\varepsilon)+2 \varepsilon J(\varepsilon)
\end{aligned}
$$

The condition $\int_{-\infty}^{\infty} h^{*}(y) p(y) \mathrm{d} y=\sigma_{-}+\sigma_{+}=\sigma_{x}$ implies

$$
C_{1}=\frac{\sqrt{2 \pi}}{\beta_{t}(\sqrt{2 \pi}-\varepsilon I(\varepsilon))}, \quad C_{2}=C_{3}=0
$$

which fixes C_{1} as a function of ε. The next step is to express d_{1} and d_{2} in terms of ε :

$$
\begin{aligned}
d_{2} & =\frac{C_{1}^{2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{y^{2}}{\left(y^{2}+\varepsilon\right)^{2}} \mathrm{e}^{-\frac{y^{2}}{2}} \mathrm{~d} y-1=\frac{C_{1}^{2}}{\sqrt{2 \pi}}(I(\varepsilon)-\varepsilon J(\varepsilon))-1, \\
d_{1} & =\frac{C_{1}^{2} \beta_{t}^{2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{y^{2}\left(y^{2}-1\right)}{\left(y^{2}+\varepsilon\right)^{2}} \mathrm{e}^{-\frac{y^{2}}{2}} \mathrm{~d} y+d_{2} \\
& =\frac{C_{1}^{2} \beta_{t}^{2}}{\sqrt{2 \pi}}(\sqrt{2 \pi}-(1+2 \varepsilon) I(\varepsilon)+\varepsilon(1+\varepsilon) J(\varepsilon))+d_{2} .
\end{aligned}
$$

First, we use lemma 5.2 to express the above in terms of elementary functions and the error function. Then, using Maple, we find that $\varepsilon \mapsto \max \left\{d_{1}, d_{2}\right\}$ has a unique minimum at $\varepsilon=0.605$, for which $d_{1}=d_{2}=0.470$. This leads to a C_{1} that equals 2.359 , and to a quality of

$$
\sigma=\sqrt{\max \left\{d_{1}, d_{2}\right\}}=0.685
$$

5.2. Optimal σ_{z}-measurement

For optimal σ_{z}-measurement, we can run the same program. We search for the function \tilde{h} which optimizes the quality $\tilde{\sigma}$, under the restriction that $\tilde{h}\left(Y_{t}\right)$ be a pointer for σ_{z}-measurement. That is, we search for a function \tilde{h} minimizing the functional of equation (11), but now under the restriction $\int_{\infty}^{\infty} h(y) p(y) \mathrm{d} y=\sigma_{z}$. Again there are three cases of interest, $d_{1}=d_{2}, d_{1}>d_{2}$ and $d_{2}>d_{1}$, which we can treat simultaneously by introducing, analogous to equation (12), the functional

$$
\begin{aligned}
\tilde{\Lambda}\left(h, \kappa, \gamma_{1}, \gamma_{2}, \gamma_{3}\right) & :=\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h^{2}(y) \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y-1\right) \\
+ & \kappa\left(\frac{\beta_{t}^{2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h^{2}(y)\left(y^{2}-1\right) \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y\right)+\gamma_{1}\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h(y) \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y+1\right) \\
+ & \gamma_{2}\left(\frac{\beta_{t}^{2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h(y)\left(y^{2}-1\right) \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y-2\right)+\gamma_{3}\left(\int_{-\infty}^{\infty} h(y) y \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{~d} y\right) .
\end{aligned}
$$

Indeed, γ_{1}, γ_{2} and γ_{3} are the Lagrange multipliers enforcing the restriction $\int_{\infty}^{\infty} h(y) p(y) \mathrm{d} y=$ σ_{z}. Again, the functional σ^{2} of equation (11) depends non-differentiably on h when $d_{1}=d_{2}$. We then have to search for the optimum among the points of non-differentiability, in which case κ is the Lagrange multiplier confining us to these points. If $d_{1}>d_{2}$ then $\kappa=1$ and if $d_{2}>d_{1}$ then $\kappa=0$. Summarizing, wherever Λ takes its minimal value, optimality implies $\frac{\delta \tilde{\Lambda}}{\delta h}\left(\tilde{h}, \kappa, \gamma_{1}, \gamma_{2}, \gamma_{3}\right)=0$ for some $\kappa, \gamma_{1}, \gamma_{2}$ and γ_{3}. Performing the functional derivative yields either

$$
\begin{equation*}
\tilde{h}(x)=\frac{D_{1} x+D_{2}}{x^{2}+\delta}+D_{3} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\tilde{h}(x)=D_{4} x^{2}+D_{5} x+D_{6} \tag{16}
\end{equation*}
$$

for some (time-dependent) constants $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}, D_{6}$ and δ depending on $\kappa, \gamma_{1}, \gamma_{2}$ and γ_{3}.

Again, we begin with the least demanding case (16), resulting from $\kappa=0$. The condition $\int_{-\infty}^{\infty} \tilde{h}(y) p(y) \mathrm{d} y=\sigma_{z}$ implies $D_{5}=0, D_{4}=\beta_{t}^{-2}$ and $D_{6}=-1-\beta_{t}^{2}$. For $t \rightarrow \infty$, this leads to

$$
\sigma^{2}=\left\|M\left(\tilde{h}^{2}\left(Y_{t}\right)\right)-M\left(\tilde{h}\left(Y_{t}\right)\right)^{2}\right\|=\left\|\left(4 \sigma_{+} \sigma_{-}+3 I\right)-I\right\|=6,
$$

so that $\sigma \rightarrow \sqrt{6}$.

This improves the result $\tilde{\sigma}=2.973$ obtained previously, but once again the ultimate bound will be reached in the more arduous case (15). There, the condition $\int_{-\infty}^{\infty} \tilde{h}(y) p(y) \mathrm{d} y=\sigma_{z}$ implies

$$
D_{1}(\sqrt{2 \pi}-\delta I(\delta))=0, \quad D_{2}=\frac{2 \sqrt{2 \pi}}{\beta_{t}^{2}(\sqrt{2 \pi}-(1+\delta) I(\delta))}, \quad D_{3}=-\frac{\sqrt{2 \pi}+I(\delta) D_{2}}{\sqrt{2 \pi}} .
$$

This leads to expressions for d_{1} and d_{2} as a function of δ. Using lemma 5.2 and Maple once more, we find that the function $\delta \mapsto \max \left\{d_{1}, d_{2}\right\}$ has a unique minimum at $\delta=2.701$, for which $d_{1}=d_{2}=2.373$. This leads to a quality of

$$
\tilde{\sigma}=\sqrt{\max \left\{d_{1}, d_{2}\right\}}=1.540
$$

attained for $D_{1}=0, D_{2}=-21.649$ and $D_{3}=5.391$. For the joint measurement this leads to

$$
\sigma \tilde{\sigma}=1.056
$$

Although we did not achieve the bound of 1 provided by theorem 3.5, we have come as close as the measurement setup allows. We conclude that, using the setup investigated in this paper, no simultaneous measurement of σ_{x} and σ_{z} will be able to approach the quantum bound by more than 5.6%. Furthermore, we have identified the unique pointers for this optimal measurement in equations (13) and (15).

6. Distribution of pointer variables

We have designed pointers $h^{*}\left(Y_{t}\right)$ and $\tilde{h}\left(Y_{t}\right)$ in such a way that their distributions in the final state best resemble the distributions of σ_{x} and σ_{z} in the initial state. We will now calculate and plot these final densities.

6.1. Calculation of h^{*} - and \tilde{h}-densities

Let ρ be the initial state of the qubit and let it be parameterized by its Bloch vector $\left(P_{x}, P_{y}, P_{z}\right)$. By equation (10), the density $q(y)$ of Y_{t} is given by

$$
\begin{equation*}
q(y)=\rho(p(y))=\frac{\mathrm{e}^{-\frac{1}{2} y^{2}}}{\sqrt{2 \pi}}\left(1+\beta_{t} y P_{x}+\beta_{t}^{2}\left(y^{2}-1\right) \frac{P_{z}+1}{2}\right) . \tag{17}
\end{equation*}
$$

We are interested in the the distributions $r(x)$ and $s(x)$ of $h^{*}\left(Y_{t}\right)$ and $\tilde{h}\left(Y_{t}\right)$ respectively. Let us start with h^{*}. From equation (13), we first calculate the points y where $h^{*}(y)=x$ for some fixed value of x.

$$
y_{ \pm}=\frac{C_{1} \pm \sqrt{C_{1}^{2}-4 x^{2} \varepsilon}}{2 x}
$$

By the Frobenius-Peron equation (see e.g. [19]), $r(x)$ is given by

$$
r(x)=\sum_{+,-} \frac{q\left(y_{ \pm}\right)}{\left|h^{* \prime}\left(y_{ \pm}\right)\right|},
$$

which leads immediately to

$$
\begin{equation*}
r(x)=\sum_{+,-} \frac{\left(y_{ \pm}^{2}+\varepsilon\right)^{2}\left(1+\beta_{t} y_{ \pm} P_{x}+\beta_{t}^{2}\left(y_{ \pm}^{2}-1\right) \frac{P_{z}+1}{2}\right)}{C_{1}\left|y_{ \pm}^{2}-\varepsilon\right|} \frac{\mathrm{e}^{-\frac{1}{2} y_{ \pm}^{2}}}{\sqrt{2 \pi}} \tag{18}
\end{equation*}
$$

where it is understood that $r(x) \neq 0$ only for $x \in\left[-\frac{C_{1}}{2 \sqrt{\varepsilon}}, \frac{C_{1}}{2 \sqrt{\varepsilon}}\right]$.

Figure 1. Pointer for σ_{x}.
We run a similar analysis for $s(x)$. The points y in which $\tilde{h}(y)=x$ are given by

$$
y_{ \pm}= \pm \sqrt{\frac{\left(x-D_{3}\right) \delta-D_{2}}{D_{3}-x}}
$$

This leads to

$$
\begin{equation*}
s(x)=\sum_{+,-} \frac{\left(y_{ \pm}^{2}+\delta\right)^{2}\left(1+\beta_{t} y_{ \pm} P_{x}+\beta_{t}^{2}\left(y_{ \pm}^{2}-1\right) \frac{P_{2}+1}{2}\right)}{2\left|D_{2} y_{ \pm}\right|} \frac{\mathrm{e}^{-\frac{1}{2} y_{ \pm}^{2}}}{\sqrt{2 \pi}} \tag{19}
\end{equation*}
$$

with $s(x) \neq 0$ only for $x \in\left[D_{3}+\frac{D_{2}}{\delta}, D_{3}\right]$. We proceed with a graphical illustration of the results obtained so far.

6.2. Plots of σ_{x}-measurement

According to formula (17), the distribution of the endpoint of the weighted path depends on the input qubit-state. For instance, the negative σ_{x}-eigenstate, the tracial state and the positive σ_{x}-eigenstate lead to the distributions depicted in figures A.1, A. 3 and A. 5 in Appendix A.

In order to estimate σ_{x}, we use the pointer of σ_{x} given by

$$
\begin{equation*}
h^{*}(x)=\frac{C_{1} x}{x^{2}+\varepsilon}, \tag{20}
\end{equation*}
$$

with $\varepsilon=0.605$ and $C_{1}=2.359$. It is illustrated in figure 1 above.
In formula (18), we have calculated the probability distributions of this pointer under the distributions of the endpoint of the weighted path illustrated in figures A.1, A. 3 and A.5. They are illustrated in figures A.2, A. 4 and A. 6 in Appendix A.

6.3. Plots of σ_{z}-measurement

We repeat this for the σ_{z}-pointer. By formula (17), the positive σ_{z}-eigenstate, the tracial state and the negative σ_{z}-eigenstate lead to the distributions of the endpoint of the weighted path shown in figures B.1, B. 3 and B. 5 in Appendix B.

In order to estimate σ_{z}, we use the pointer of σ_{z} illustrated in figure 2 overleaf. It is given by

$$
\begin{equation*}
\tilde{h}(x)=\frac{D_{2}}{x^{2}+\delta}+D_{3} \tag{21}
\end{equation*}
$$

with $\delta=2.701, D_{2}=-21.649$ and $D_{3}=5.391$.

Figure 2. Pointer for σ_{z}.

From formula (19), we read off the probability distributions of this pointer under the distributions of the endpoint of the weighted path illustrated in figures B.1, B. 3 and B.5. They are depicted in Appendix B in figures B.2, B. 4 and B.6.

7. Discussion

In this paper, we have investigated homodyne detection of the spontaneous decay of a two-level atom into the electromagnetic field. We have seen how the photocurrent, besides carrying information on σ_{x} (which is immediate from the innovations term in the filtering equation), also carries information on σ_{z}. Homodyne detection can thus be viewed as a joint measurement of the non-commuting observables σ_{x} and σ_{z} in the initial state of the qubit, and we have identified the optimal pointers for this procedure in equations (20) and (21).

One particular feature of the pointers we constructed might seem counterintuitive at first: they yield values outside $[-1,1]$ with nonzero probability. This is a direct result of our requirement that the measurement be unbiased. Suppose, for example, that the input state is $|\uparrow\rangle$, so that σ_{z} has value 1 . Since the photocurrent carries information on σ_{x} as well, its information on σ_{z} is certainly flawed, and will yield estimates $\sigma_{z}<1$ at least some of the time. Unbiasedness then implies that also estimates $\sigma_{z}>1$ must occur.

On the other hand, an unbiased measurement will yield on average the 'true' value of σ_{z} for any possible input state. (Not just for the three possibilities sketched in Appendix B.) In repeated experiments, optimality of our pointers guarantees fast convergence to these averages.

Theorem 3.5 provides a theoretical bound for the quality of joint measurement of σ_{x} and σ_{z}. No conceivable measurement procedure can ever achieve $\sigma \tilde{\sigma}<1$. It is now clear that this bound cannot be met by way of homodyne detection: a small part of the information extracted from the atom is simply lost in this particular procedure. Constructing the optimal pointers on the photocurrent does yield $\sigma \tilde{\sigma}=1.056$ however, a figure much closer to the bound than 4.437 provided by the naïve choice of (9).

Acknowledgments

We thank Mădălin Guţă and Hans Maassen for interesting discussions. We thank John Gough for a critical reading of the text. LB acknowledges support from the ARO under Grant DAAD19-03-1-0073.

Appendix A. Densities of σ_{x}-measurement

Figure A.1. Probability density of the endpoint of the weighted path for input $|\leftarrow\rangle$.

Figure A.3. Probability density of the endpoint of the weighted path for input tr .

Figure A.5. Probability density of the endpoint of the weighted path for input $|\rightarrow\rangle$.

Figure A.2. Probability density of the σ_{x}-pointer for input $|\leftarrow\rangle$.

Figure A.4. Probability density of the σ_{x}-pointer for input $t r$.

Figure A.6. Probability density of the σ_{x}-pointer for input $|\rightarrow\rangle$.

Appendix B. Densities of σ_{z}-measurement

Figure B.1. Probability density of the endpoint of the weighted path for input $|\uparrow\rangle$.

Figure B.3. Probability density of the endpoint of the weighted path for input tr.

Figure B.5. Probability density of the endpoint of the weighted path for input $|\downarrow\rangle$.

Figure B.2. Probability density of the σ_{z}-pointer for input $|\uparrow\rangle$.

Figure B.4. Probability density of the σ_{z}-pointer for input tr.

Figure B.6. Probability density of the σ_{z}-pointer for input $|\downarrow\rangle$.

References

[1] Accardi L, Frigerio A and Lu Y 1990 The weak coupling limit as a quantum functional central limit Commun. Math. Phys. 131 537-70
[2] Armen M, Au J, Stockton J, Doherty A and Mabuchi H 2002 Adaptive homodyne measurement of optical phase Phys. Rev. Lett. 89133602
[3] Barchielli A 1990 Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics Quantum Opt. 2 423-41
[4] Barchielli A and Lupieri G 1985 Quantum stochastic calculus, operation valued stochastic processes, and continual measurements in quantum mechanics J. Math. Phys. 26 2222-30
[5] Belavkin V 1988 Nondemolition stochastic calculus in Fock space and nonlinear filtering and control in quantum systems Stochastic Methods in Mathematics and Physics: Proc. 24th Karpacz Winter School ed R Guelerak and W Karwowski (Singapore: World Scientific) pp 310-24
[6] Belavkin V 1992 Quantum continual measurements and a posteriori collapse on CCR Commun. Math. Phys. 146 611-35
[7] Belavkin V 1992 Quantum stochastic calculus and quantum nonlinear filtering J. Multivariate Anal. 42 171-201
[8] Bouten L 2004 Filtering and control in quantum optics PhD Thesis Radboud Universiteit Nijmegen (Preprint quant-ph/0410080)
[9] Bouten L, Guţă M and Maassen H 2004 Stochastic Schrödinger equations J. Phys. A: Math. Gen. 37 3189-209
[10] Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer)
[11] Davies E 1969 Quantum stochastic processes Commun. Math. Phys. 15 277-304
[12] Davies E 1976 Quantum Theory of Open Systems (London: Academic)
[13] Geremia J, Stockton J and Mabuchi H 2004 Real-time quantum feedback control of atomic spin-squeezing Science 304 270-3
[14] Gough J 2004 Feynman Diagrams and the Quantum Stochastic Calculus (Nottingham: Nottingham Trent University) (Preprint quant-ph/0411064)
[15] Gough J 2005 Quantum flows as markovian limit of emission, absorption and scattering interactions Commun. Math. Phys. 254 489-512
[16] Holevo A 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland)
[17] Hudson R and Parthasarathy K 1984 Quantum Itô's formula and stochastic evolutions Commun. Math. Phys. 93 301-23
[18] Janssens B 2005 Quantum measurement: a coherent description Master's Thesis Radboud Universiteit Nijmegen (Preprint quant-ph/0503009)
[19] Ott E 1993 Chaos in Dynamical Systems (Cambridge: Cambridge University Press)
[20] Parthasarathy K 1992 An Introduction to Quantum Stochastic Calculus (Basel: Birkhäuser)
[21] Takesaki M 1971 Conditional expectations in von neumann algebras J. Funct. Anal. 9 306-21
[22] von Neumann J 1932 Mathematische Grundlagen der Quantenmechanik (Berlin: Springer)
[23] Werner R F 2001 Quantum Information Theory-An Invitation (Springer Tracts in Modern Physics vol 173) (Berlin: Springer) pp 14-57
[24] Wiseman H 1996 Quantum trajectories and quantum measurement theory Quantum Semiclass. Opt. 8 205-22
[25] Wiseman H and Milburn G 1993 Quantum theory of field-quadrature measurements Phys. Rev. A 47 642-62

