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Abstract
We study a model of a qubit in interaction with the electromagnetic field.
By means of homodyne detection, the field-quadrature At + A∗

t is observed
continuously in time. Due to the interaction, information about the initial
state of the qubit is transferred to the field, thus influencing the homodyne
measurement results. We construct random variables (pointers) on the
probability space of homodyne measurement outcomes having distributions
close to the initial distributions of σx and σz. Using variational calculus, we find
the pointers that are optimal. These optimal pointers are very close to hitting the
bound imposed by Heisenberg’s uncertainty relation on joint measurement of
two non-commuting observables. We close the paper by giving the probability
densities of the pointers.

PACS numbers: 03.65.Ta, 03.70.+k

1. Introduction

The implementation of quantum filtering and control [5] in recent experiments [2, 13] has
brought new interest to the field of continuous time measurement of quantum systems
[5, 7, 9–12, 25]. In particular, homodyne detection has played a considerable role in this
development [10]. In this paper, we aim to gain insight into the transfer of information about
the initial state of a qubit from this qubit, a two-level atom, to the homodyne photocurrent,
which is observed in actual experiments. Our goal is to perform a joint measurement of
two non-commuting observables in the initial system. In order to achieve this, we construct
random variables (pointers) on the space of possible homodyne measurement results, having
distributions close (in a sense to be defined) to the distributions of these observables in the
initial state.

The problem of joint measurement of non-commuting observables has been studied by
several authors before; see [12, 16, 22] and the references therein. As a measure for the quality
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of an unbiased measurement, we use the difference between the variance of the pointer in the
final state and the variance of the observable in the initial state, evaluated in the worst case
initial state [18]. In other words, the quality of measurement is given in terms of the worst
case added variance. These worst case added variances for two pointers, corresponding to
two non-commuting observables of the initial system, satisfy a Heisenberg-like relation that
bounds how well their joint measurement can be performed [18].

This paper concentrates on the example of a qubit coupled to the quantized electromagnetic
field. We study this system in the weak coupling limit [15], i.e. the interaction between qubit
and field is governed by a quantum stochastic differential equation in the sense of Hudson and
Parthasarathy [17]. In the electromagnetic field, we perform a homodyne detection experiment.
Its integrated photocurrent is the measurement result for measurement of the field-quadrature
At + A∗

t continuously in time. Using the characteristic functions introduced by Barchielli and
Lupieri [4], we find the probability density for these measurement results. In this density the
x- and z-component of the Bloch vector of the initial state appear, indicating that homodyne
detection is in fact a joint measurement of σx and σz in the initial state.

The goal of this paper is to construct random variables (pointers) on the probability space
of homodyne measurement results having distributions as close as possible to those of the
observables σx and σz in the initial state of the qubit. ‘As close as possible’ is taken to
mean that the pointer must give an unbiased estimate of the observable, with its worst case
added variance as low as possible. Using an argument due to Wiseman [24], we first show
that optimal random variables will only depend on the endpoint of a weighted path of the
integrated photocurrent. Allowed to restrict our attention to this smaller class of pointers, we
are able to use standard variational calculus to obtain the optimal random variables. They
do not achieve the bound imposed by the Heisenberg-like relation for the worst case added
variances, but will be off by less than 5.6%.

The remainder of this paper is organized as follows. In section 2, we introduce the model
of the qubit coupled to the field in the weak coupling limit. Section 3 introduces the quality
of a measurement in terms of the worst case added variance. This section also contains the
Heisenberg-like relation for joint measurement. In section 4, we calculate the characteristic
function of Barchielli and Lupieri for the homodyne detection experiment. Section 5 deals
with the variational calculus to find the optimal pointers. In section 6, we calculate the densities
of the optimal pointers and then capture our main results graphically. In the last section we
discuss our results.

2. The model

We consider a two-level atom, i.e. a qubit, in interaction with the quantized electromagnetic
field. The qubit is described by C

2 and the electromagnetic field by the symmetric Fock space
F over the Hilbert space of quadratically integrable functions L2(R) (space of one-photon
wavefunctions), i.e.

F := C ⊕
∞⊕

k=1

L2(R)⊗s k.

With the Fock space F we can describe superpositions of field states with different numbers
of photons. The joint system of qubit and field is described by the Hilbert space C

2 ⊗ F .
The interaction between the qubit and the electromagnetic field is studied in the weak

coupling limit [1, 14, 15]. This means that in the interaction picture the unitary dynamics of
the qubit and the field together is given by a quantum stochastic differential equation (QSDE)
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in the sense of Hudson and Parthasarathy [17]

dUt = {
σ− dA∗

t − σ+ dAt − 1
2σ+σ− dt

}
Ut, with σ− =

(
0 0
1 0

)
,

σ+ =
(

0 1
0 0

)
, U0 = I.

(1)

The operators σ− and σ+ are the annihilator and creator on the two-level system. The field
annihilation and creation processes are denoted by At and A∗

t , respectively. Keep in mind that
the evolution Ut acts nontrivially on the combined system C

2 ⊗ F , whereas σ± and At are
understood to designate the single system-operators σ± ⊗I and I ⊗At . Throughout this paper,
we will remain in the interaction picture. Equation (1) should be understood as a shorthand
for the integral equation

Ut = I +
∫ t

0
σ−Uτ dA∗

τ −
∫ t

0
σ+Uτ dAτ − 1

2

∫ t

0
σ+σ−Uτ dτ,

where the integrals on the right-hand side are stochastic integrals in the sense of Hudson and
Parthasarathy [17]. The value of these integrals does not lie in their actual definition (on
which we will not comment further), but in the Itô rule satisfied by them, allowing for easy
calculations.

Theorem 2.1 (quantum Itô rule [17, 20]). Let Xt and Yt be stochastic integrals of the form

dXt = Ct dAt + Dt dA∗
t + Et dt, dYt = Ft dAt + Gt dA∗

t + Ht dt,

for some stochastically integrable processes Ct,Dt , Et , Ft ,Gt and Ht (see [17, 20] for
definitions). Then the process XtYt satisfies the relation

d(XtYt ) = Xt dYt + (dXt) Yt + dXt dYt ,

where dXt dYt should be evaluated according to the following quantum Itô table:

dAt dA∗
t dt

dAt 0 dt 0

dA∗
t 0 0 0

dt 0 0 0

i.e. dXt dYt = CtGt dt .

As a corollary we have that, for any f ∈ C2(R), the process f (Xt) satisfies d(f (Xt)) =
f ′(Xt ) dXt + 1

2f ′′(Xt)(dXt)
2, where (dXt)

2 should be evaluated according to the quantum Itô
table.

First a matter of notation. The quantum Itô rule will be used for calculating differentials
of products of stochastic integrals. Let {Zi}i=1,...,p be stochastic integrals. We then write

d(Z1Z2 · · · Zp) =
∑

ν⊂{1,...,p}
ν �=∅

[ν]

where the sum runs over all non-empty subsets of {1, . . . , p}. For any ν = {i1, . . . , ik}, the
term [ν] is the contribution to d(Z1Z2 · · ·Zp) coming from differentiating only the terms
with indices in the set {i1, . . . , ik} and preserving the order of the factors in the product. The
differential d(Z1Z2Z3), for example, contains terms of type [1], [2], [3], [12], [13], [23] and
[123]. We have [2] = Z1(dZ2)Z3, [13] = (dZ1)Z2(dZ3), [123] = (dZ1)(dZ2)(dZ3), etc.

Let us return to equation (1). In order to illustrate how the quantum Itô rule will be used,
we calculate the time evolution on the qubit explicitly. The algebra of qubit-observables is
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the algebra of 2 × 2-matrices, denoted by M2(C). The algebra of observables in the field is
given by B(F), the bounded operators on F . If id : M2(C) → M2(C) is the identity map and
φ : B(F) → C is the expectation with respect to the vacuum state � := 1 ⊕ 0 ⊕ 0 ⊕ · · · ∈ F
(i.e. φ(Y ) := 〈�,Y�〉), then time evolution on the qubit Tt : M2(C) → M2(C) is given
by Tt (X) := id ⊗ φ(U ∗

t X ⊗ IUt ). On the combined system, the full time evolution
jt : M2(C) ⊗ B(F) → M2(C) ⊗ B(F) is given by jt (W) := U ∗

t WUt . In a diagram
this reads

M2(C)
Tt

—–−→ M2(C)

| ↑
id ⊗ I | |id ⊗ φ↓ |

M2(C) ⊗ B(F)
jt

—–−→ M2(C) ⊗ B(F).

(2)

In the Schrödinger picture the arrows would be reversed. A qubit-state ρ would be extended
with the vacuum to ρ ⊗ φ, then time evolved with Ut , and in the last step the partial trace over
the field would be taken, resulting in the state ρ ◦ Tt .

Using the Itô rule we can derive a (matrix-valued) differential equation for Tt (X), i.e.

dTt (X) = id ⊗ φ(d(U ∗
t X ⊗ IUt))

= id ⊗ φ((dU ∗
t )X ⊗ IUt + U ∗

t X ⊗ I (dUt) + (dU ∗
t )X ⊗ I (dUt))

= id ⊗ φ(U ∗
t L(X) ⊗ IUt ) dt

= Tt (L(X)) dt, (3)

where L is the Lindblad generator

L(X) := − 1
2 (σ+σ−X + Xσ+σ−) + σ+Xσ−.

In derivation (3), we used the QSDE for U ∗
t which easily follows from (1)

dU ∗
t = U ∗

t

{
σ+ dAt − σ− dA∗

t − 1
2σ+σ− dt

}
, U ∗

0 = I.

Furthermore, we used that stochastic integrals with respect to dAt and dA∗
t vanish with respect

to the vacuum expectation, leaving us only with the dt terms. The differential equation (3)
with initial condition T0(X) = X is solved by Tt (X) = exp(tL)(X), which is exactly the time
evolution of a two-level system spontaneously decaying to the ground state, as it should be.
Although the arguments above are completely standard (cf [17]), they do illustrate nicely and
briefly some of the techniques used also in the following sections.

3. Quality of information transfer

Now suppose we do a homodyne detection experiment, enabling us to measure the observables
At + A∗

t in the field continuously in time [3]. If initially the qubit is in state ρ, then
at time t the qubit and field together are in a state ρt on M2(C) ⊗ B(F) given by
ρt (W) := ρ ⊗ φ(U ∗

t WUt) = ρ(id ⊗ φ(U ∗
t WUt)). Since

d(id ⊗ φ(U ∗
t I ⊗ (At + A∗

t )Ut )) = id ⊗ φ(d(U ∗
t I ⊗ (At + A∗

t )Ut ))

= id ⊗ φ([1] + [2] + [3] + [12] + [13] + [23] + [123])

= id ⊗ φ
(
U ∗

t (σ− + σ+) ⊗ IUt

)
dt

= exp(tL)(σ− + σ+) dt = e− t
2 σx dt,

we have that regardless the initial state ρ of the qubit, the expectation of (At + A∗
t ) in the final

state ρt will equal the expectation of (2 − 2 e− t
2 )σx in the initial state ρ.
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3.1. Defining the quality of information transfer

The process at hand is thus a transfer of information about σx to a ‘pointer’ At + A∗
t , which

can be read off by means of homodyne detection. This motivates the following definition.

Definition 3.1 (unbiased measurement [18]). Let X be an observable of the qubit, i.e. a self-
adjoint element of M2(C), and let Y be an observable of the field, i.e. a self-adjoint operator
in (or affiliated to) B(F). An unbiased measurement M of X with pointer Y is by definition a
completely positive map M : B(F) → M2(C) such that M(Y) = X.

Needless to say, for each fixed t the map M : B(F) → M2(C) given by M(B) :=
id ⊗ φ(U ∗

t I ⊗ BUt) is a measurement of σx with pointer Y = (2 − 2 e− t
2 )−1(At + A∗

t ).
This means that, after the measurement procedure of coupling to the field in the vacuum state
and allowing for interaction with the qubit for t time units, the distribution of the measurement
results of the pointer Y has inherited the expectation of σx , regardless of the initial state ρ.
However, we are more ambitious and would like its distribution as a whole to resemble that
of σx . This motivates the following definition.

Definition 3.2 (quality [18]). Let M : B(F) → M2(C) be an unbiased measurement of X
with pointer Y. Then its quality σ is defined by

σ 2 := sup{Varρ◦M(Y ) − Varρ(X)|ρ ∈ S(M2(C))},
where S(M2(C)) denotes the state space of M2(C) (i.e. all positive normalized linear
functionals on M2(C)).

This means that σ 2 is the variance added to the initial distribution of X by the measurement
procedure M for the worst case initial state ρ. A small calculation shows that

Varρ◦M(Y ) − Varρ(X) = ρ(M(Y 2) − M(Y)2),

which implies that σ 2 = ‖M(Y 2) − M(Y)2‖, where X �→ ‖X‖ denotes the operator norm
on M2(C). In particular this shows that σ 2 is positive, as one might expect. It follows from
[18] that σ equals zero if and only if the measurement procedure M exactly carries over all
distributions of X to Y. In short, σ is a suitable measure for how well M transfers information
about X to the pointer Y.

3.2. Calculating the quality of information transfer

Let us return to the example at hand, i.e. M(B) = id ⊗ φ(U ∗
t I ⊗ BUt), with field-observable

Y = (2 − 2 e− t
2 )−1(At + A∗

t ) as a pointer for σx . Let us calculate its quality, which amounts to
evaluating M(Y 2) = (2 − 2 e− t

2 )−2M((At + A∗
t )

2). To this aim, we will first introduce some
ideas which will be of use to us in later calculations as well.

Definition 3.3. Let f and h be real-valued functions, h twice differentiable. Let Yt be given
by dYt = f (t)(dAt + dA∗

t ), Y0 = 0. For X ∈ M2(C) we define

Fh(X, t) := id ⊗ φ(U ∗
t X ⊗ h(Yt )Ut ).

When no confusion can arise we shall shorten Fh(X, t) to Fh(X).

The homodyne detection experiment has given us a measurement result (the integrated
photocurrent) which is just the path of measurement results for At + A∗

t continuously in
time. Given this result, we post-process it by weighting the increments of the path with the
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function f (t) and letting h(y) act on the result. The following lemma will considerably
shorten calculations.

Lemma 3.4.
dFh(X)

dt
= Fh(L(X)) + f (t)Fh′(σ+X + Xσ−) + 1

2f (t)2Fh′′(X).

Proof. Using the notation below theorem 2.1 with Z1 = U ∗
t , Z2 = I ⊗ h(Yt ) and Z3 = Ut ,

we find

dFh(X) = id ⊗ φ([1] + [2] + [3] + [12] + [13] + [23] + [123]).

Again we will use that the vacuum expectation kills all dAt and dA∗
t terms. Using theorem 2.1

we see that after the vacuum expectation the terms [1], [3] and [13] make up Fh(L(X)) dt .
Since third powers of increments are 0 we again have [123] = 0. From

dh(Yt ) = h′(Yt )f (t)(dAt + dA∗
t ) + 1

2h′′(Yt )f (t)2 dt,

we find that, after taking vacuum expectations, terms [12] and [23] make up the second term
f (t)Fh′(σ+X + Xσ−) dt and [2] provides the last term 1

2f (t)2Fh′′(X) dt . �

We are now well-equipped to calculate M((At + A∗
t )

2). Choose f (t) = 1 and h(x) = x2.
(The maps x �→ xn will be denoted by X

n hereafter.) Then M((At + A∗
t )

2) = FX2(I ) and by
lemma 3.4
dFX2(I )

dt
= 2FX(σ− + σ+) + F1(I ) = 2FX(σ− + σ+) + I, FX2(I, 0) = 0. (4)

Applying lemma 3.4 to FX(σ− + σ+), we obtain

dFX(σ− + σ+)

dt
= −1

2
FX(σ− + σ+) + 2F1(σ+σ−), FX(σ− + σ+, 0) = 0. (5)

Finally, F1(σ+σ−) satisfies

dF1(σ+σ−)

dt
= −F1(σ+σ−), F1(σ+σ−, 0) = σ+σ−. (6)

Solving (6), (5) and (4) successively leads first to F1(σ+σ−) = e−t σ+σ−, then to FX(σ− +σ+) =
4(e− t

2 − e−t )σ+σ− and finally to FX2(I ) = 8(e− t
2 − 1)2σ+σ− + tI . Consequently, the quality

of the measurement M of σx with pointer Y = (2 − 2 e− t
2 )−1(At + A∗

t ) is given by

σ 2 = ‖M(Y 2) − M(Y)2‖ =
∥∥∥∥∥8

(
e− t

2 − 1
)2

σ+σ− + tI(
2 − 2 e− t

2
)2 − I

∥∥∥∥∥
=

∥∥∥∥∥2σ+σ− +

(
t(

2 − 2 e− t
2
)2 − 1

)
I

∥∥∥∥∥ = t(
2 − 2 e− t

2
)2 + 1.

This expression takes its minimal value 2.228 at t = 2.513, leading to a quality σ = 1.493.
The calculation above has an interesting side product. The observable M((At + A∗

t )
2)

depends linearly on σz, indicating that in addition to information on σx , also information on σz

in the initial qubit-state ends up in the measurement outcome. Indeed, if we use as a pointer

Ỹ := (At + A∗
t )

2 − tI

4(e− t
2 − 1)2

− I, (7)

then we have M(Ỹ ) = σz, so that M is also a measurement of σz with the pointer Ỹ .
Note that the pointers Y and Ỹ commute, i.e. measuring At + A∗

t via the homodyne
detection scheme is an indirect joint measurement of σx and σz. If we would also like to gain
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some information about σy , we could for example sweep the measured quadrature through
[0, 2π) in time by measuring

∫ t

0 eiωτ dAτ + e−iωτ dA∗
τ instead. In this paper however, we will

restrict ourselves to continuous time measurement of At + A∗
t , as additional information on

σy would deteriorate the quality of σx- and/or σz-measurement. The following theorem is a
Heisenberg-like relation that gives a bound on how well joint measurements can be performed.

Theorem 3.5 (joint measurement [18]). Let M : B(F) → M2(C) be an unbiased measurement
of self-adjoint observables X ∈ M2(C) and X̃ ∈ M2(C) with self-adjoint commuting pointers
Y and Ỹ in (or affiliated to) B(F), respectively. Then for their corresponding qualities σ and
σ̃ the following relation holds

2σ σ̃ � ‖[X, X̃]‖.

Denote by σ̃ the quality of the σz measurement with the pointer Ỹ defined in (7). Since
[σx, σz] = −2iσy , the qualities σ and σ̃ (corresponding to the pointers Y and Ỹ , respectively)
satisfy the inequality

σ σ̃ � 1. (8)

Using similar techniques as before, which is recursively calculating FX4(I ) via lemma 3.2,
we find

σ̃ 2 = t2

8(e− t
2 − 1)4

+
2t − 4(e− t

2 − 1)2

(e− t
2 − 1)2

.

This expression takes its minimal value 8.836 at t = 2.513. This leads to a quality σ̃ = 2.973,
which means that σ σ̃ = 4.437, i.e. we are far removed from hitting bound 1 in (8). However,
there is still some room for manoeuvring by post-processing of the homodyne measurement
data.

4. The weighted path

Let us presently return to our homodyne detection experiment. We observe Aτ + A∗
τ

continuously in time, i.e. the result of our measurement is a path ω of measurement results ωτ

(the photocurrent integrated up to time τ ) for Aτ + A∗
τ . This means that we have a space 	 of

all possible measurement paths and that we can identify an operator Aτ +A∗
τ with the map from

	 to R mapping a measurement path ω ∈ 	 to the measurement result ωτ at time τ . That is,
we have simultaneously diagonalized the family of commuting operators {Aτ +A∗

τ |τ � 0} and
viewed them as random variables on the spectrum 	. The spectral projectors of the operators
{Aτ + A∗

τ |0 � τ � t} endow 	 with a filtration of σ -algebras 
t . Furthermore, the states
ρτ , defined by ρτ (W) := ρ ⊗ φ(U ∗

τ WUτ ), provide a family of consistent measures Pτ on
(	,
τ ), turning it into the probability space (	,
t , P). (See e.g. [8].)

We aim to find random variables on (	,
t , P) having distributions resembling those of
σx and σz in the initial state ρ. In the previous section we used the random variables

Y (ω) = ωτ

2 − 2 e− τ
2

and Ỹ (ω) = ω2
τ − τ

4(e− τ
2 − 1)2

− 1, τ = 2.513 (9)

for σx and σz, respectively. Our next goal is to find the optimal random variables, in the sense
of the previously defined quality.



2780 B Janssens and L Bouten

4.1. Restricting the class of pointers

In our specific example, M is given by M(B) = id ⊗ φ(U ∗
τ I ⊗ BUτ ). Note that stochastic

integrals with respect to the annihilator Aτ acting on the vacuum vector � are zero. Therefore,
we can modify Uτ to Zτ , given by

dZτ = {
σ−(dA∗

τ + dAτ ) − 1
2σ+σ− dτ

}
Zτ , Z0 = I,

without affecting M [6]. Therefore, for all B ∈ B(F), we have M(B) = id ⊗ φ(U ∗
τ I⊗BUτ ) =

id ⊗ φ(Z∗
τ I ⊗ BZτ ). The solution Zt can readily be found, it is given by

Zt =
(

e− 1
2 t 0∫ t

0 e− 1
2 τ (dAτ + dA∗

τ ) 1

)
.

Note that Zt , as a matrix valued function of the measurement path, is an element of M2(C)⊗ Ct ,
where Ct is the commutative von Neumann algebra generated by Aτ + A∗

τ , 0 � τ � t .
Moreover we see that Zt is not a function of all the (Aτ + A∗

τ )’s separately, it is only a function
of the endpoint of the weighted path Yt = ∫ t

0 e− 1
2 τ (dAτ + dA∗

τ ) [24]. Therefore if we define
St ⊂ Ct to be the commutative von Neumann algebra generated by Yt , then we even have
Zt ∈ M2(C)⊗St .

Denote by C �→ E[C|St ] the unique classical conditional expectation from Ct onto St that
leaves φ invariant, i.e. φ(E[C|St ]) = φ(C) for all C ∈ Ct . We can extend E[·|St ] by tensoring
it with the identity map on the 2 × 2 matrices to obtain a map id ⊗ E[·|St ] from M2(C) ⊗ Ct

onto M2(C) ⊗ St . From the positivity of E[·|St ] as a map between commutative algebras, it
follows that id ⊗ E[·|St ] is completely positive. Since E[·|St ] satisfies E[CS|St ] = E[C|St ]S
for all C ∈ Ct and S ∈ St , we find that id ⊗ E[·|St ] satisfies the module property, i.e.

id ⊗ E[·|St ](A1BA2) = A1(id ⊗ E[·|St ](B))A2,

for all A1, A2 ∈ M2(C) ⊗ St and B ∈ M2(C) ⊗ Ct . Moreover, if ρ is a state on M2(C), then
it follows from the invariance of φ under E[·|St ] that id ⊗ E[·|St ] leaves ρ ⊗ φ invariant. We
conclude that, given ρ on M2(C), the map id ⊗ E[·|St ] from M2(C) ⊗ Ct onto M2(C) ⊗ St

is the unique conditional expectation in the noncommutative sense of [21] that leaves ρ ⊗ φ

invariant. We will use the shorthand ESt
for id ⊗ E[·|St ] in the following.

Lemma 4.1. Let C ∈ Ct be a pointer with quality σC such that M(C) = X. Then C̃ := E[C|St ]
is also a pointer with M(C̃) = X, and with quality σC̃ � σC .

Proof. Note that for all states ρ on M2(C) we have

ρ(M(C̃)) = ρ ⊗ φ(Z∗
t I ⊗ C̃Zt ) = ρ ⊗ φ

(
Z∗

t ESt
(I ⊗ C)Zt

) = ρ ⊗ φ
(
ESt

(Z∗
t I ⊗ CZt)

)
= ρ ⊗ φ(Z∗

t I ⊗ CZt) = ρ(M(C)) = ρ(X),

where we used the module property and the fact that Zt is an element of M2(C) ⊗ St in the
third step and the invariance of ρ ⊗ φ in the fourth step. Since this holds for all states ρ on
M2(C), we conclude that M(C̃) = X.

As for the variance, we note first that the conditional expectation ESt
is a completely

positive identity preserving map. Therefore, for all self-adjoint C ∈ Ct , we have

ESt
(I ⊗ C2) �

(
ESt

(I ⊗ C)
)2

by the Cauchy–Schwarz inequality for completely positive maps [23].
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We can now apply the same strategy as before. For all states ρ on M2(C) we have

ρ(M(C2)) = ρ ⊗ φ(Z∗
t I ⊗ C2Zt)

= ρ ⊗ φ
(
ESt

(Z∗
t I ⊗ C2Zt)

)
= ρ ⊗ φ

(
Z∗

t ESt
(I ⊗ C2)Zt

)
� ρ ⊗ φ

(
Z∗

t (ESt
(I ⊗ C))2Zt

)
= ρ(M(C̃2)).

Thus M(C2) � M(C̃2), and in particular σ 2
C = ‖M(C2) − M(C)2‖ � ‖M(C̃2) −

M(C̃)2‖ = σ 2
C̃

. �

This has a very useful consequence: if we are looking for pointers that record, say σx or σz in
an optimal fashion, then it suffices to examine only pointers in St . Instead of sifting through
the collection of all random variables on the measurement outcomes, we are thus allowed to
confine the scope of our search to the rather transparent collection of measurable functions of
Yt . In the following, we will look at such pointers ht (Yt ). We will usually drop the subscript t
on h to make the notation lighter.

4.2. Distribution of Yt

At this point we are interested in the probability distribution of the random variable Yt . Its
characteristic function [4] is given by

E(k) := Eρt [exp(−ikYt )] = ρ ⊗ φ(U ∗
t I ⊗ exp(−ikYt )Ut ) = ρ(Fexp(−ikX)(I )),

so that we need only calculate Fexp(−ikX)(I ). For notational convenience, we will replace the
subscript exp(−ikX) by k in the following. Using lemma 3.4, we find the following system of
matrix-valued differential equations:

dFk(I )

dt
= −ik e− t

2 Fk(σ− + σ+) − k2 e−t

2
Fk(I ),

dFk(σ− + σ+)

dt
= −1

2
Fk(σ− + σ+) − 2ik e− t

2 Fk(σ+σ−) − k2 e−t

2
Fk(σ− + σ+),

dFk(σ+σ−)

dt
= −Fk(σ+σ−) − k2 e−t

2
Fk(σ+σ−),

with initially

Fk(I, 0) = I, Fk(σ− + σ+, 0) = σ− + σ+, Fk(σ+σ−, 0) = σ+σ−.

Solving this system leads to

Fk(I ) = e− k2(1−e−t )

2 (I − ik(1 − e−t )(σ− + σ+) − k2(1 − e−t )2σ+σ−).

We define the Fourier transform to be F(f )(x) := 1√
2π

∫ ∞
−∞ f (k) eikx dk. Then the

probability density of Yt with respect to the Lebesgue measure is given by 1√
2π

F(E)(x) =
1√
2π

ρ(F(Fk(I ))(x)). Defining p(x) := 1√
2π

F(Fk(I ))(x), we can write

p(x) = e− 1
2

x2

1−e−t

√
2π(1 − e−t )

(I + x(σ− + σ+) + (x2 − 1 + e−t )σ+σ−),

i.e. Yt is distributed according to a Gaussian perturbed by the matrix elements of the initial
state ρ(σ− +σ+) = ρ(σx) and ρ(σ+σ−) = 1

2ρ(σz)+ 1
2 . No information about ρ on σy enters the

distribution though. To gain information about σy we would have to change our continuous
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time measurement setup, as we discussed before. If we absorb a constant (1 − e−t )−
1
2 in the

definition of Yt , i.e. Yt := (1 − e−t )−
1
2
∫ t

0 e− τ
2 (dAτ + dA∗

τ ), then its density becomes

p(y) = e− y2

2√
2π

(
I + βty(σ− + σ+) + β2

t (y
2 − 1)σ+σ−

)
, (10)

where βt := √
1 − e−t .

5. Variational calculus

In lemma 4.1, we have shown that it suffices to consider only random variables of the form
h(Yt ) for some measurable h. In equation (10), we have captured the probability distribution
of Yt . All that remains now is to calculate the optimal h, which can be done with variational
calculus.

5.1. Optimal σx-measurement

We seek the function h∗ for which the quality σ of the pointer h∗(Yt ) for σx-measurement is
optimal. In other words, we need

σ 2 :=
∥∥∥∥∥
∫ ∞

−∞
h2(y)p(y) dy −

(∫ ∞

−∞
h(y)p(y) dy

)2
∥∥∥∥∥ :=

∥∥∥∥
(

d1 0
0 d2

)∥∥∥∥ (11)

to be minimal under the restriction
∫ ∞
−∞ h(y)p(y) dy = σx .

Now σ 2 is the norm of a diagonal 2 × 2-matrix with entries d1 and d2. Both depend
smoothly on h, but σ 2 = max{d1, d2} does not. There are three possibilities:

(i) σ 2 = d1 in some open neighbourhood of h∗. To find these h∗, we must minimize the
smooth functional d1 and then check whether d1 < d2.

(ii) σ 2 = d2 in some open neighbourhood of h∗. To find these h∗, we must minimize d2 and
check whether d2 < d1.

(iii) d1 = d2 for h∗. To find these h∗, we must minimize d1 subject to the condition d1 = d2.

In principle, we need three different functionals �1,�2 and �3 for these three distinct cases.
However, it turns out that we can make do with the following functional:

�(h, κ, γ1, γ2, γ3) :=
(

1√
2π

∫ ∞

−∞
h2(y) e− 1

2 y2
dy − 1

)

+ κ

(
β2

t√
2π

∫ ∞

−∞
h2(y)(y2 − 1) e− 1

2 y2
dy

)
+ γ1

(∫ ∞

−∞
h(y) e− 1

2 y2
dy

)

+ γ2

(∫ ∞

−∞
h(y)(y2 − 1) e− 1

2 y2
dy

)
+ γ3

(
βt√
2π

∫ ∞

−∞
h(y)y e− 1

2 y2
dy − 1

)
.

(12)

The constants γ1, γ2 and γ3 are the Lagrange multipliers enforcing
∫ ∞
−∞ h(y)p(y) dy = σx .

These are needed in all cases: �1,�2 and �3. One can readily check that setting κ = 0 in
� yields �1, setting κ = 1 yields �2 and considering κ as a free Lagrange multiplier forces
d1 = d2, so that one has �3 = �.

All three cases lead to similar optimality conditions. The requirement that the optimal
solution be stable under first-order variations yields h∗ satisfying either

h∗(x) = C1x + C2

x2 + ε
+ C3 (13)
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or

h∗(x) = C4x
2 + C5x + C6 (14)

for some real constants C1, C2, C3, C4, C5, C6 and ε depending on κ, γ1, γ2, γ3.
Suppose that h∗ takes the shape (14). The constraint

∫ ∞
−∞ h∗(y)p(y) dy = σ− + σ+ will

then force C4 = C6 = 0 and C5 = β−1
t , so that h∗(y) = β−1

t y. The random variable we are
investigating is simply the observed path, weighted by the function f (τ) = β−1

t e−τ/2, with t
the final time of measurement. Since all the integrals we encounter are Gaussian moments,
we can readily compute M(h∗2(Yt )) = ∫ ∞

−∞ h∗2(y)p(y) dy to be 2σ+σ− + β−2
t I . Thus

σ 2 = ∥∥(
2σ+σ− + β−2

t I
) − (σ− + σ+)

2
∥∥ = 1 + β−2

t .

For t → ∞, this amounts to σ → √
2. Already, we have improved on the naive result

σ = 1.493 obtained previously.
We proceed with the more involved case (13), which will provide us with the optimal

solution. Before we continue with the constants C1, C2, C3 and ε however, we calculate some
integrals for later use.

Definition 5.1. Define the error function erf (x) and integrals I (ε) and J (ε) by

erf(x) := 2√
π

∫ x

0
e−u2

du, I (ε) :=
∫ ∞

−∞

e− x2

2

x2 + ε
dx, J (ε) :=

∫ ∞

−∞

e− x2

2

(x2 + ε)2
dx.

Lemma 5.2.

J (ε) =
√

2π + (1 − ε)I (ε)

2ε
and I (ε) = π

√
eε

ε

(
1 − erf

(√
ε

2

))
.

Proof. Since the Fourier transform of e−√
ε|k| is equal to

√
2ε
π

1
x2+ε

, we find

I (ε) =
√

π

2ε

∫ ∞

−∞
F(e−√

ε|k|)F
(
e− k2

2
)

dx

=
√

π

2ε

∫ ∞

−∞
e−√

ε|k| e− k2

2 dk =
√

2π

ε

∫ ∞

0
e−√

εk e− k2

2 dk

=
√

2π

ε
e

1
2 ε

∫ ∞
√

ε

e− u2

2 du = π

√
eε

ε

(
1 − erf

(√
ε

2

))
,

where, in the second step, we have used that the Fourier transform F is unitary. The expression
for J follows from

0 = x e− x2

2

x2 + ε

∣∣∣∣
∞

−∞
=

∫ ∞

−∞

d

dx

(
x e− x2

2

x2 + ε

)
dx =

∫ ∞

−∞

(
1 − x2

x2 + ε
− 2x2

(x2 + ε)2

)
e− x2

2 dx

=
∫ ∞

−∞

(
−1 +

ε − 1

x2 + ε
+

2ε

(x2 + ε)2

)
e− x2

2 dx = −
√

2π + (ε − 1)I (ε) + 2εJ (ε). �

The condition
∫ ∞
−∞ h∗(y)p(y) dy = σ− + σ+ = σx implies

C1 =
√

2π

βt(
√

2π − εI (ε))
, C2 = C3 = 0
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which fixes C1 as a function of ε. The next step is to express d1 and d2 in terms of ε:

d2 = C2
1√

2π

∫ ∞

−∞

y2

(y2 + ε)2
e− y2

2 dy − 1 = C2
1√

2π
(I (ε) − εJ (ε)) − 1,

d1 = C2
1β

2
t√

2π

∫ ∞

−∞

y2(y2 − 1)

(y2 + ε)2
e− y2

2 dy + d2

= C2
1β

2
t√

2π
(
√

2π − (1 + 2ε)I (ε) + ε(1 + ε)J (ε)) + d2.

First, we use lemma 5.2 to express the above in terms of elementary functions and the error
function. Then, using Maple, we find that ε �→ max{d1, d2} has a unique minimum at
ε = 0.605, for which d1 = d2 = 0.470. This leads to a C1 that equals 2.359, and to a
quality of

σ =
√

max{d1, d2} = 0.685.

5.2. Optimal σz-measurement

For optimal σz-measurement, we can run the same program. We search for the function h̃

which optimizes the quality σ̃ , under the restriction that h̃(Yt ) be a pointer for σz-measurement.
That is, we search for a function h̃ minimizing the functional of equation (11), but now under
the restriction

∫ ∞
∞ h(y)p(y) dy = σz. Again there are three cases of interest, d1 = d2, d1 > d2

and d2 > d1, which we can treat simultaneously by introducing, analogous to equation (12),
the functional

�̃(h, κ, γ1, γ2, γ3) :=
(

1√
2π

∫ ∞

−∞
h2(y) e− 1

2 y2
dy − 1

)

+ κ

(
β2

t√
2π

∫ ∞

−∞
h2(y)(y2 − 1) e− 1

2 y2
dy

)
+ γ1

(
1√
2π

∫ ∞

−∞
h(y) e− 1

2 y2
dy + 1

)

+ γ2

(
β2

t√
2π

∫ ∞

−∞
h(y)(y2 − 1) e− 1

2 y2
dy − 2

)
+ γ3

(∫ ∞

−∞
h(y)y e− 1

2 y2
dy

)
.

Indeed, γ1, γ2 and γ3 are the Lagrange multipliers enforcing the restriction
∫ ∞
∞ h(y)p(y) dy =

σz. Again, the functional σ 2 of equation (11) depends non-differentiably on h when d1 = d2.
We then have to search for the optimum among the points of non-differentiability, in which
case κ is the Lagrange multiplier confining us to these points. If d1 > d2 then κ = 1 and if
d2 > d1 then κ = 0. Summarizing, wherever � takes its minimal value, optimality implies
δ�̃
δh

(h̃, κ, γ1, γ2, γ3) = 0 for some κ, γ1, γ2 and γ3. Performing the functional derivative yields
either

h̃(x) = D1x + D2

x2 + δ
+ D3 (15)

or

h̃(x) = D4x
2 + D5x + D6 (16)

for some (time-dependent) constants D1,D2,D3,D4,D5,D6 and δ depending on κ, γ1, γ2

and γ3.
Again, we begin with the least demanding case (16), resulting from κ = 0. The condition∫ ∞

−∞ h̃(y)p(y) dy = σz implies D5 = 0,D4 = β−2
t and D6 = −1 − β2

t . For t → ∞, this
leads to

σ 2 = ‖M(h̃2(Yt )) − M(h̃(Yt ))
2‖ = ‖(4σ+σ− + 3I ) − I‖ = 6,

so that σ → √
6.



Optimal pointers for joint measurement of σx and σz via homodyne detection 2785

This improves the result σ̃ = 2.973 obtained previously, but once again the ultimate bound
will be reached in the more arduous case (15). There, the condition

∫ ∞
−∞ h̃(y)p(y) dy = σz

implies

D1(
√

2π − δI (δ))= 0, D2 = 2
√

2π

β2
t (

√
2π − (1 + δ)I (δ))

, D3 = −
√

2π + I (δ)D2√
2π

.

This leads to expressions for d1 and d2 as a function of δ. Using lemma 5.2 and Maple once
more, we find that the function δ �→ max{d1, d2} has a unique minimum at δ = 2.701, for
which d1 = d2 = 2.373. This leads to a quality of

σ̃ =
√

max{d1, d2} = 1.540,

attained for D1 = 0,D2 = −21.649 and D3 = 5.391. For the joint measurement this leads to

σ σ̃ = 1.056.

Although we did not achieve the bound of 1 provided by theorem 3.5, we have come as close as
the measurement setup allows. We conclude that, using the setup investigated in this paper, no
simultaneous measurement of σx and σz will be able to approach the quantum bound by more
than 5.6%. Furthermore, we have identified the unique pointers for this optimal measurement
in equations (13) and (15).

6. Distribution of pointer variables

We have designed pointers h∗(Yt ) and h̃(Yt ) in such a way that their distributions in the final
state best resemble the distributions of σx and σz in the initial state. We will now calculate
and plot these final densities.

6.1. Calculation of h∗- and h̃-densities

Let ρ be the initial state of the qubit and let it be parameterized by its Bloch vector (Px, Py, Pz).
By equation (10), the density q(y) of Yt is given by

q(y) = ρ(p(y)) = e− 1
2 y2

√
2π

(
1 + βtyPx + β2

t (y
2 − 1)

Pz + 1

2

)
. (17)

We are interested in the the distributions r(x) and s(x) of h∗(Yt ) and h̃(Yt ) respectively. Let
us start with h∗. From equation (13), we first calculate the points y where h∗(y) = x for some
fixed value of x.

y± =
C1 ±

√
C2

1 − 4x2ε

2x
.

By the Frobenius–Peron equation (see e.g. [19]), r(x) is given by

r(x) =
∑
+,−

q(y±)

|h∗′(y±)| ,

which leads immediately to

r(x) =
∑
+,−

(
y2

± + ε
)2

(
1 + βty±Px + β2

t

(
y2

± − 1
)

Pz+1
2

)
C1

∣∣y2± − ε
∣∣ e− 1

2 y2
±

√
2π

, (18)

where it is understood that r(x) �= 0 only for x ∈ [− C1

2
√

ε
, C1

2
√

ε

]
.
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Figure 1. Pointer for σx .

We run a similar analysis for s(x). The points y in which h̃(y) = x are given by

y± = ±
√

(x − D3)δ − D2

D3 − x
.

This leads to

s(x) =
∑
+,−

(
y2

± + δ
)2

(
1 + βty±Px + β2

t

(
y2

± − 1
)

Pz+1
2

)
2|D2y±|

e− 1
2 y2

±
√

2π
, (19)

with s(x) �= 0 only for x ∈ [
D3 + D2

δ
,D3

]
. We proceed with a graphical illustration of the

results obtained so far.

6.2. Plots of σx-measurement

According to formula (17), the distribution of the endpoint of the weighted path depends on
the input qubit-state. For instance, the negative σx-eigenstate, the tracial state and the positive
σx-eigenstate lead to the distributions depicted in figures A.1, A.3 and A.5 in Appendix A.

In order to estimate σx , we use the pointer of σx given by

h∗(x) = C1x

x2 + ε
, (20)

with ε = 0.605 and C1 = 2.359. It is illustrated in figure 1 above.
In formula (18), we have calculated the probability distributions of this pointer under the

distributions of the endpoint of the weighted path illustrated in figures A.1, A.3 and A.5. They
are illustrated in figures A.2, A.4 and A.6 in Appendix A.

6.3. Plots of σz-measurement

We repeat this for the σz-pointer. By formula (17), the positive σz-eigenstate, the tracial state
and the negative σz-eigenstate lead to the distributions of the endpoint of the weighted path
shown in figures B.1, B.3 and B.5 in Appendix B.

In order to estimate σz, we use the pointer of σz illustrated in figure 2 overleaf. It is given
by

h̃(x) = D2

x2 + δ
+ D3, (21)

with δ = 2.701,D2 = −21.649 and D3 = 5.391.
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Figure 2. Pointer for σz.

From formula (19), we read off the probability distributions of this pointer under the
distributions of the endpoint of the weighted path illustrated in figures B.1, B.3 and B.5. They
are depicted in Appendix B in figures B.2, B.4 and B.6.

7. Discussion

In this paper, we have investigated homodyne detection of the spontaneous decay of a two-level
atom into the electromagnetic field. We have seen how the photocurrent, besides carrying
information on σx (which is immediate from the innovations term in the filtering equation), also
carries information on σz. Homodyne detection can thus be viewed as a joint measurement
of the non-commuting observables σx and σz in the initial state of the qubit, and we have
identified the optimal pointers for this procedure in equations (20) and (21).

One particular feature of the pointers we constructed might seem counterintuitive at first:
they yield values outside [−1, 1] with nonzero probability. This is a direct result of our
requirement that the measurement be unbiased. Suppose, for example, that the input state
is |↑〉, so that σz has value 1. Since the photocurrent carries information on σx as well, its
information on σz is certainly flawed, and will yield estimates σz < 1 at least some of the
time. Unbiasedness then implies that also estimates σz > 1 must occur.

On the other hand, an unbiased measurement will yield on average the ‘true’ value
of σz for any possible input state. (Not just for the three possibilities sketched in
Appendix B.) In repeated experiments, optimality of our pointers guarantees fast convergence
to these averages.

Theorem 3.5 provides a theoretical bound for the quality of joint measurement of σx and
σz. No conceivable measurement procedure can ever achieve σ σ̃ < 1. It is now clear that this
bound cannot be met by way of homodyne detection: a small part of the information extracted
from the atom is simply lost in this particular procedure. Constructing the optimal pointers
on the photocurrent does yield σ σ̃ = 1.056 however, a figure much closer to the bound than
4.437 provided by the naı̈ve choice of (9).
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Appendix A. Densities of σx-measurement
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Figure A.1. Probability density of the endpoint of the
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Appendix B. Densities of σz-measurement
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Figure B.1. Probability density of the endpoint of the
weighted path for input |↑〉.

Figure B.2. Probability density of the σz-pointer for
input |↑〉.
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input tr.
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[17] Hudson R and Parthasarathy K 1984 Quantum Itô’s formula and stochastic evolutions Commun. Math.

Phys. 93 301–23
[18] Janssens B 2005 Quantum measurement: a coherent description Master’s Thesis Radboud Universiteit Nijmegen

(Preprint quant-ph/0503009)
[19] Ott E 1993 Chaos in Dynamical Systems (Cambridge: Cambridge University Press)
[20] Parthasarathy K 1992 An Introduction to Quantum Stochastic Calculus (Basel: Birkhäuser)
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